首页 | 本学科首页   官方微博 | 高级检索  
     


Phase Relations and Stability of Magnetoplumbite- and Crichtonite-Series Phases under Upper-Mantle P-T Conditions: an Experimental Study to 15 GPa with Implications for LILE Metasomatism in the Lithospheric Mantle
Authors:KONZETT, JURGEN   YANG, HEXIONG   FROST, DANIEL J.
Affiliation:1 INSTITUT FÜR MINERALOGIE UND PETROGRAPHIE, UNIVERSITÄT INNSBRUCK, INNRAIN 52, A-6020 INNSBRUCK, AUSTRIA
2 DEPARTMENT OF MECHANICAL AND MATERIALS ENGINEERING, FLORIDA INTERNATIONAL UNIVERSITY, 10555 WEST FLAGLER STREET, MIAMI, FL 33175, USA
3 BAYERISCHES GEOINSTITUT, UNIVERSITÄT BAYREUTH, UNIVERSITÄTSSTRASSE 30, D-95447 BAYREUTH, GERMANY
Abstract:High-pressure–high-temperature experiments were performedin the range 7–15 GPa and 1300–1600°C to investigatethe stability and phase relations of the K- and Ba-dominantmembers of the crichtonite and magnetoplumbite series of phasesin simplified bulk compositions in the systems TiO2–ZrO2–Cr2O3–Fe2O3–BaO–K2Oand TiO2–Cr2O3–Fe2O3–BaO–K2O. Both seriesof phases occur as inclusions in diamond and/or as constituentsof metasomatized peridotite mantle xenoliths sampled by kimberlitesor alkaline lamprophyres. They can accommodate large ion lithophileelements (LILE) and high field strength elements (HFSE) on awt % level and, hence, can critically influence the LILE andHFSE budget of a metasomatized peridotite even if present onlyin trace amounts. The Ba and K end-members of the crichtoniteseries, lindsleyite and mathiasite, are stable to 11 GPa and1500–1600°C. Between 11 and 12 GPa, lindsleyite breaksdown to form two Ba–Cr-titanates of unknown structurethat persist to at least 13 GPa. The high-pressure breakdownproduct of mathiasite is a K–Cr-titanate with an idealizedformula KM7O12, where M = Ti, Cr, Mg, Fe. This phase possessesspace group P63/m with a = 9·175(2) Å, c = 2·879(1)Å, V = 209·9(1) Å3. Towards high temperatures,lindsleyite persists to 1600°C, whereas mathiasite breaksdown between 1500 and 1600°C to form a number of complexTi–Cr-oxides. Ba and K end-members of the magnetoplumbiteseries, hawthorneite and yimengite, are stable in runs at 7,10 and 15 GPa between 1300 and 1400°C coexisting with anumber of Ti–Cr-oxides. Molar mixtures (1:1) of lindsleyite–mathiasiteand hawthorneite–yimengite were studied at 7–10GPa and 1300–1400°C, and 9–15 GPa and 1150–1400°C,respectively. In the system lindsleyite–mathiasite, onehomogeneous Ba–K phase is stable, which shows a systematicincrease in the K/(K + Ba) ratio with increasing pressure. Inthe system hawthorneite–yimengite, two coexisting Ba–Kphases appear, which are Ba rich and Ba poor, respectively.The data obtained from this study suggest that Ba- and K-dominantmembers of the crichtonite and magnetoplumbite series of phasesare potentially stable not only throughout the entire subcontinentallithosphere but also under conditions of an average present-daymantle adiabat in the underlying asthenosphere to a depth ofup to 450 km. At still higher pressures, both K and Ba may remainstored in alkali titanates that would also be eminently suitablefor the transport of other ions with large ionic radii. KEY WORDS: crichtonite; magnetoplumbite; high-P–T experiments; phase relations; upper mantle
Keywords:: crichtonite   magnetoplumbite   high-P–  T experiments   phase relations   upper mantle
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号