首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic-frequency Laboratory Measurements of Shear Mode Viscoelasticity in Crustal Rocks II: Thermally Stressed Quartzite and Granite
Authors:C Lu  I Jackson
Institution:Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia. Fax: +61 6 279 8253. E-mail: Ian.Jackson@anu.edu.au, AU
Abstract:—Forced torsional oscillation techniques have been used to explore the seismic-frequency shear mode viscoelasticity of specimens of two crustal rocks (Cape Sorell quartzite and Delegate aplite), cycled between room temperature and 700°C under conditions of moderate confining pressure. The anisotropy and intergranular inhomogeneity of thermal expansivity in these materials give rise to large deviatoric stresses, resulting in thermal cracking at temperatures above a pressure-dependent threshold temperature, associated with the onset of very pronounced temperature sensitivity of the shear modulus, in general accord with the predictions of fracture mechanics models. For Delegate aplite in particular, the shear modulus behaves reproducibly during multiple thermal cycles at different confining pressures, consistent with the notion that the thermal cracks are of low aspect ratio (minimum/maximum dimension), and are therefore readily closed by the prevailing confining pressure once the thermal stresses are removed. Marked frequency-dependent dissipation of shear strain energy is observed on heating each rock to temperatures ≥ 500°C, although the attenuation varies significantly with prior thermal history, probably as a result of progressive dehydration and relaxation of deviatoric stresses. Temperature and pressure dependent crack densities for Delegate aplite have been estimated by comparison of the observed shear moduli with those expected for a crack-free aggregate. In parallel with the forced oscillation tests, measurements have been made of the rate at which (argon) pore pressure equilibrium is re-established following a perturbation. Combination of these results, which provide a proxy for permeability, with the inferred crack densities indicates that the variation of permeability with crack density is well described by a percolation model with a threshold crack density of ~0.2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号