首页 | 本学科首页   官方微博 | 高级检索  
     

基于无人机遥感的黄海绿潮搁浅生物量估算
作者姓名:尚伟涛  高志强  姜晓鹏  田信鹏  郭少方
作者单位:中国科学院 海岸带环境过程与生态修复重点实验室, 中国科学院 烟台海岸带研究所, 山东 烟台 264003;山东省海岸带环境过程重点实验室, 中国科学院 烟台海岸带研究所, 山东 烟台 264003;中国科学院大学, 北京 100049;中国科学院 海岸带环境过程与生态修复重点实验室, 中国科学院 烟台海岸带研究所, 山东 烟台 264003;山东省海岸带环境过程重点实验室, 中国科学院 烟台海岸带研究所, 山东 烟台 264003;烟台市科技情报研究所, 山东 烟台 264003
基金项目:国家自然科学基金项目(41876107);山东省联合基金项目(U1706219);中国科学院海洋大科学研究中心重点部署项目(COMS2019J02);中国科学院前沿科学重点研究计划(ZDBS-LY-7010);中国科学院海洋生态与环境科学重点实验室(中国科学院海洋研究所)开放基金资助(KLMEES202005);国家重点研发计划“蓝色粮仓科技创新”项目(2019YFD0900705)
摘    要:浒苔在近岸搁浅后会破坏海岸景观,干扰水上运动,给滨海旅游业造成严重影响。本文使用无人机搭载的多光谱和可见光传感器对山东半岛的海阳、乳山和文登的三个海滩搁浅的浒苔进行航拍监测,并结合地物光谱测量数据,分别选择归一化植被指数(NDVI)、差值植被指数(DVI)和虚拟基线高度浮藻指数(VB-FAH)对海滩搁浅浒苔与岸边植被及非植被(海水、沙滩)进行识别评估,并分别估算了三个研究区搁浅浒苔的生物量。研究结果表明:NDVI可以识别植被和非植被,但无法区分潮间带上部和潮间带下部分布的浒苔;DVI和VB-FAH对植被和非植被的区分度不高,但对不同分布的搁浅浒苔具有一定的区分度,其中, DVI对潮间带上部和潮间带下部分布浒苔的识别能力优于VB-FAH。因此,通过对岸边植被进行腌膜,利用DVI构建海滩搁浅浒苔生物量估算模型,实现了海滩搁浅浒苔生物量的估算。海阳、乳山和文登三个海滩搁浅浒苔的生物量分别为1 468 t、745 t和5 034 t,本文提出的方法可以为搁浅浒苔的清理和资源合理分配提供技术支持。

关 键 词:无人机遥感  绿潮  搁浅生物量  多光谱
收稿时间:2020-07-08
修稿时间:2020-08-19
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号