首页 | 本学科首页   官方微博 | 高级检索  
     

桥梁水平位移混沌特征识别与神经网络预测研究
引用本文:栾元重,梁耀东,董岳,翁丽媛,刘承旭. 桥梁水平位移混沌特征识别与神经网络预测研究[J]. 大地测量与地球动力学, 2021, 41(1): 7-11. DOI: 10.14075/j.jgg.2021.01.002
作者姓名:栾元重  梁耀东  董岳  翁丽媛  刘承旭
作者单位:山东科技大学测绘科学与工程学院,青岛市前湾港路579号,266590;山东科技大学测绘科学与工程学院,青岛市前湾港路579号,266590;山东科技大学测绘科学与工程学院,青岛市前湾港路579号,266590;山东科技大学测绘科学与工程学院,青岛市前湾港路579号,266590;山东科技大学测绘科学与工程学院,青岛市前湾港路579号,266590
摘    要:
跨海大桥系统受外界影响扰动,其变形伴有混沌现象发生.对桥梁变形监测数据实现了混沌识别,运用C-C法计算时间序列的延迟时间,用G-P方法求得最佳嵌入维数,通过求取的时间延迟和最佳嵌入维数对桥梁变形监测数据进行相空间重构,为混沌时间序列预测模型的建立奠定基础;基于RBF神经网络建立混沌时间序列预测模型,对实测数据进行桥梁变...

关 键 词:跨海大桥  混沌特征识别  最大Lyapunov指数  RBF神经网络  混沌时间序列预测

Chaotic Characteristics Recognition and Neural Network Prediction of Bridge Horizontal Displacement Analysis
LUAN Yuanzhong,LIANG Yaodong,DONG Yue,WENG Liyuan,LIU Chengxu. Chaotic Characteristics Recognition and Neural Network Prediction of Bridge Horizontal Displacement Analysis[J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 7-11. DOI: 10.14075/j.jgg.2021.01.002
Authors:LUAN Yuanzhong  LIANG Yaodong  DONG Yue  WENG Liyuan  LIU Chengxu
Affiliation:(Shandong University of Science and Technology,579 Qianwangang Road,Qingdao 266590,China)
Abstract:
The cross-sea bridge system is disturbed by external influences, and its deformation is accompanied by chaos. Chaotic identification in bridge deformation monitoring data is realized, delay time of time series is calculated in C-C method, the G-P method is used to obtain the best embedding dimension. Bridge deformation monitoring data is compared with the obtained time delay. Spatial reconstruction lays the foundation for the establishment of the chaotic time series prediction model; the chaotic time series prediction model is established based on the RBF neural network, the horizontal displacement of the bridge deformation is predicted from the measured data, and we conduct comparative analysis of the prediction results of the chaotic time series based on the largest Lyapunov exponent and the measured data. The results shows that the prediction results of chaotic time series based on RBF neural network are better than those of chaotic time series based on maximum Lyapunov index; short-term prediction has good effect.
Keywords: cross-sea bridge  chaotic feature recognition  maximum Lyapunov index  RBF neural network  chaotic time series prediction  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号