首页 | 本学科首页   官方微博 | 高级检索  
     检索      

冬季大气斜压性对黑潮延伸体年代际异常响应的维持机制研究
引用本文:张舰齐,李崇银,余沛龙,陈雄.冬季大气斜压性对黑潮延伸体年代际异常响应的维持机制研究[J].地球物理学报,2021,64(1):67-86.
作者姓名:张舰齐  李崇银  余沛龙  陈雄
作者单位:国防科技大学气象海洋学院,长沙410073;国防科技大学气象海洋学院,长沙410073;中国科学院大气物理研究所,北京100029;国防科技大学气象海洋学院,长沙410073;国防科技大学气象海洋学院,长沙410073
基金项目:国家自然科学基金重大项目(41490642),国防科技大学校内科研计划项目(ZK20-45)资助.
摘    要:黑潮延伸体(Kuroshio Extension,KE)海域附近具有强烈的大气斜压性可显著影响北太平洋上空风暴轴异常,因而有必要研究KE海区附近斜压性的特征和维持机制.本文设计数值试验并结合高分辨率ERA-Interim资料研究了大气斜压性对KE年代际海温变率模态(KEDV-induced SSTA,Kuroshio Extension Decadal variability SSTA)中的中尺度海洋锋(KEDV-induced Meso-scale SST Front,KMSTF)的响应特征和维持机制.研究发现,表层斜压性对KMSTF的响应分布相对KMSTF经向梯度的分布偏南,平流过程的响应起主要作用.表层感热通量的响应相对KMSTF分布偏北,表层温度的响应分布与KMSTF分布的位相差异是导致其偏北分布的主要原因.积云对流过程、垂直热量输送和月内尺度扰动向极热量输送均可削弱表层斜压性,而感热通量加热可加强表层斜压性.研究对流层斜压性的特征发现,斜压大值随高度向北移动,极值在边界层顶附近,积云动量再分配影响的月内尺度扰动通量经向辐合有一定的贡献.同时,相对KMSTF暖海温异常偏南分布的低SLP(Surface Level Pressure)可引发经圈平面内次级环流,并将月内尺度扰动热量、水汽和动量向高纬度输送,从而引起斜压性随高度向北分布并增强斜压性.此外还发现,积云对流过程引发的非绝热加热通过扰动热力作用使高层急流向北偏移.

关 键 词:KMSTF  表层斜压性  对流层斜压性  积云动量  次级环流
收稿时间:2020-05-09

Response of atmospheric baroclinicity to Kuroshio Extension decadal variability in Winter
ZHANG JianQi,LI ChongYin,YU PeiLong,CHEN Xiong.Response of atmospheric baroclinicity to Kuroshio Extension decadal variability in Winter[J].Chinese Journal of Geophysics,2021,64(1):67-86.
Authors:ZHANG JianQi  LI ChongYin  YU PeiLong  CHEN Xiong
Institution:1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:There is a strong atmospheric baroclinicity near the Kuroshio Extension (KE), which can significantly affect the storm tracks anomaly. Therefore, it is necessary to investigate the characteristics and maintenance process of baroclinicity near the KE. In this paper, numerical experiments are designed and high-resolution ERA-Interim data are used to study the response characteristics and maintenance of atmospheric baroclinicity to KE meso-scale SSTA Front (KMSTF) associated with KE decadal variability (KEDV-induced SSTA). The results suggest that the response of atmospheric surface baroclinicity to KMSTF is distributed southward due to advection process compared with distribution of KMSTF. The response of surface sensible heat flux is distributed to northward compared with distribution of KMSTF. The difference in the phase between atmospheric surface temperature and KMSTF is the main reason for its distribution to the northward. Cumulus convection, vertical heat transfer and submonthly fluctuations transferring the heat flux to polar weaken the surface baroclinicity, and sensible heat flux heating strengthen the surface baroclinicity. Studying the troposphere baroclinicity, it is found that the baroclinicity is distributed northward with height, and the large value is near the top of the boundary layer. Meridional convergence of fluctuations flux formed by cumulus momentum redistribution is the main contribution. The low SLP can trigger cumulus convection process, which causes the clockwise secondary circulation in altitude-latitude sections transfering heat, water vapor and momentum to polar. That is the main reason why the baroclinicity distribute to northward with height. In addition, it is also found that the diabatic heating induced by cumulus convection causes the upper jet to shift northward through fluctuations thermal effect.
Keywords:KMSTF  Surface baroclinicity  Troposphere baroclinicity  Cumulus momentum  Secondary circulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号