首页 | 本学科首页   官方微博 | 高级检索  
     


Multivariate discriminant analysis distinguishes metal- from non metal-related biomarker responses in the clam Chamaelea gallina
Authors:Rodríguez-Ortega Manuel J  Rodríguez-Ariza Antonio  Gómez-Ariza José Luis  Muñoz-Serrano Andrés  López-Barea Juan
Affiliation:a Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio “Severo Ochoa”, 1ª planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
b Unidad de Investigación, Hospital Reina Sofía, Córdoba, Spain
c Departamento de Química y Ciencias de los Materiales, Universidad de Huelva, Huelva, Spain
d Departamento de Genética, Universidad de Córdoba, Spain
Abstract:Molecular biomarkers are among the most sensitive and earliest responses to pollutants. However, lack of detailed knowledge on variability of responses and their possible seasonal variation limit their use. In addition, the seasonality of biological processes modulates the response of organisms to pollutant stressors. Using multivariate statistics, we have studied the influence of environmental and biological factors on the response of a battery of molecular biomarkers in the clam Chamaelea gallina collected along the South-Spanish littoral. Multivariate discriminant analysis clearly distinguished biomarker response between clean and polluted areas, using heavy metals as indicator of pollution. Such differences disappeared when the dataset was normalised for metal content, thus indicating that pollution was the main significant cause of the changes observed between clean and polluted sites. In conclusion, this work shows that, when applying a complete biomarker panel, multivariate statistical tools can be used to discern pollutant- from non pollutant-related responses.
Keywords:Bivalve molluscs   Metals   Biomarkers   Oxidative stress   Seasonality   Multivariate discriminant analysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号