首页 | 本学科首页   官方微博 | 高级检索  
     

中国畜禽养殖的空间分析及分区研究(英文)
引用本文:付强,诸云强,孔云峰,孙九林. 中国畜禽养殖的空间分析及分区研究(英文)[J]. 地理学报(英文版), 2012, 22(6): 1079-1100. DOI: 10.1007/s11442-012-0984-4
作者姓名:付强  诸云强  孔云峰  孙九林
作者单位:[1]College of Environment and Planning, Henan University, Kaifeng 475001, Henan, China [2]State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China [3]Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475001, Henan, China
基金项目:Key Program of Special Science Research in Environmental Protection Public Welfare Industry, No.201009017; Research Plan of LREIS, No.088RA900KA; Key Project for the Strategic Plan in IGSNRR, CAS, No.2012ZD010
摘    要:The capacity of livestock breeding in China has increased rapidly since 1949, and the total output of meat, poultry and eggs maintains the world’s top first in recent 20 years. Livestock emissions and pollution is closely associated with its population and spatial distribution. This paper aims to investigate the spatial patterns of livestock and poultry breeding in China. Using statistical yearbook and agricultural survey in 2007, the county-level populations of livestock and poultry are estimated as equivalent standardized pig index (ESP), per cultivated land pig index (PCLP) and per capita pig index (PCP). With the help of spatial data analysis (ESDA) tools in Geoda and ArcGIS software, especially the Moran’s I and LISA statistics, the nationwide global and local clustering trends of the three indicators are examined respectively. The Moran’s I and LISA analysis shows that ESP and PCP are significantly clustering both globally and locally. However, PCLP is clustering locally but not significant globally. Furthermore, the thematic map series (TMS) and related gravity centers curve (GCC) are introduced to explore the spatial patterns of livestock and poultry in China. The indicators are classified into 16 levels, and the GCCs for the three indicators from level 1 to 16 are discussed in detail. For districting purpose, each interval between gravity centers of near levels for all the three indicators is calculated, and the districting types of each indicator are obtained by merging adjacent levels. The districting analysis for the three indicators shows that there exists a potential uniform districting scheme for China’s livestock and poultry breeding. As a result, the China’s livestock and poultry breeding would be classified into eight types: extremely sparse region, sparse region, relatively sparse region, normally sparse region, normal region, relatively concentrated region, concentrated region and highly concentrated region. It is also found that there exists a clear demarcation line between the concentrated and the sparse regions. The line starts from the county boundary between Xin Barag Left Banner and Xin Barag Right Banner, Inner Mongolia Autonomous Region to the west coast of Dongfang County, Hainan Province.

关 键 词:livestock  spatial autocorrelation  gravity centers curve  spatial patterns  demarcation  the thematic map series  sparse region  concentrated region

Spatial analysis and districting of the livestock and poultry breeding in China
Qiang Fu,Yunqiang Zhu,Yunfeng Kong,Jiulin Sun. Spatial analysis and districting of the livestock and poultry breeding in China[J]. Journal of Geographical Sciences, 2012, 22(6): 1079-1100. DOI: 10.1007/s11442-012-0984-4
Authors:Qiang Fu  Yunqiang Zhu  Yunfeng Kong  Jiulin Sun
Affiliation:1. College of Environment and Planning, Henan University, Kaifeng, 475001, Henan, China
2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
3. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475001, Henan, China
Abstract:The capacity of livestock breeding in China has increased rapidly since 1949, and the total output of meat, poultry and eggs maintains the world??s top first in recent 20 years. Livestock emissions and pollution is closely associated with its population and spatial distribution. This paper aims to investigate the spatial patterns of livestock and poultry breeding in China. Using statistical yearbook and agricultural survey in 2007, the county-level populations of livestock and poultry are estimated as equivalent standardized pig index (ESP), per cultivated land pig index (PCLP) and per capita pig index (PCP). With the help of spatial data analysis (ESDA) tools in Geoda and ArcGIS software, especially the Moran??s I and LISA statistics, the nationwide global and local clustering trends of the three indicators are examined respectively. The Moran??s I and LISA analysis shows that ESP and PCP are significantly clustering both globally and locally. However, PCLP is clustering locally but not significant globally. Furthermore, the thematic map series (TMS) and related gravity centers curve (GCC) are introduced to explore the spatial patterns of livestock and poultry in China. The indicators are classified into 16 levels, and the GCCs for the three indicators from level 1 to 16 are discussed in detail. For districting purpose, each interval between gravity centers of near levels for all the three indicators is calculated, and the districting types of each indicator are obtained by merging adjacent levels. The districting analysis for the three indicators shows that there exists a potential uniform districting scheme for China??s livestock and poultry breeding. As a result, the China??s livestock and poultry breeding would be classified into eight types: extremely sparse region, sparse region, relatively sparse region, normally sparse region, normal region, relatively concentrated region, concentrated region and highly concentrated region. It is also found that there exists a clear demarcation line between the concentrated and the sparse regions. The line starts from the county boundary between Xin Barag Left Banner and Xin Barag Right Banner, Inner Mongolia Autonomous Region to the west coast of Dongfang County, Hainan Province.
Keywords:livestock  spatial autocorrelation  gravity centers curve  spatial patterns  demarcation  the thematicmap series  sparse region  concentrated region
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号