首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany
Authors:E Hegner  H J Walter  M Satir
Institution:Institut für Mineralogie, Petrologie und Geochemie, Universit?t Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany, DE
Abstract: The Urach volcanic field is unique within the Tertiary–Quaternary European volcanic province (EVP) due to more than 350 tuffaceous diatremes and only sixteen localities with extremely undersaturated olivine melilitite. We report representative Pb-Sr-Nd isotopic compositions and incompatible trace element data for twenty-two pristine augite, Cr-diopside, hornblende, and phlogopite megacryst samples from the diatremes, and seven melilitite whole rocks. The Pb isotopic compositions for melilitites and comagmatic megacrysts have very radiogenic 206Pb/204Pb ratios of 19.4 to 19.9 and plot on the northern hemisphere mantle reference line (NHRL). The data indicate absence of an old crustal component as reflected in the high 207Pb/204Pb ratios of many basalts from the EVP. This inference is supported by 206Pb/204Pb ratios of ∼17.6 to 18.3 and ɛNd of ∼−7.8 to +1.6 for five phlogopite xenocryst samples reflecting a distinct and variably rejuvenated lower Hercynian basement. The 87Sr/86Sr ratios of 0.7033 to 0.7035 in the comagmatic megacrysts are low relative to their moderately radiogenic Nd isotopic compositions (ɛNd +2.2 to +5.1) and consistent with a long-term source evolution with a low Rb/Sr ratio and depletion in light rare-earth elements (LREE). The melilitite whole-rock data show a similar range in Nd isotopic ratios as determined for the megacrysts but their Sr isotopic compositions are often much more radiogenic due to surface alteration. The REE patterns and incompatible trace element ratios of the melilitites (e.g. Nb/Th, Nb/U, Sr/Nd, P/Nd, Ba/Th, Zr/Hf) are similar to those in ocean island basalts (OIB); negative anomalies for normalized K and Rb concentrations support a concept of melt evolution in the lithospheric mantle. Highly variable Ce/Pb ratios of 29 to 66 are positively correlated with La/Lu, La/K2O, and Ba/Nd and interpreted to reflect melting in the presence of residual amphibole and phlogopite. The data suggest an origin of the melilitites from a chemical boundary layer very recently enriched by melts from old OIB sources. We suggest that the OIB-like mantle domains represent low-temperature melting heterogeneities in an upwelling asthenosphere under western Europe. Received: 9 March 1995/Accepted: 24 July 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号