首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single receiver phase ambiguity resolution with GPS data
Authors:Willy Bertiger  Shailen D Desai  Bruce Haines  Nate Harvey  Angelyn W Moore  Susan Owen  Jan P Weiss
Institution:1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Abstract:Global positioning system (GPS) data processing algorithms typically improve positioning solution accuracy by fixing double-differenced phase bias ambiguities to integer values. These “double-difference ambiguity resolution” methods usually invoke linear combinations of GPS carrier phase bias estimates from pairs of transmitters and pairs of receivers, and traditionally require simultaneous measurements from at least two receivers. However, many GPS users point position a single local receiver, based on publicly available solutions for GPS orbits and clocks. These users cannot form double differences. We present an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users. The algorithm processes dual- frequency GPS data from a single receiver together with wide-lane and phase bias estimates from the global network of GPS receivers that were used to generate the orbit and clock solutions for the GPS satellites. We constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates. For this precise point positioning, no other receiver data are required. When tested, our algorithm significantly improved repeatability of daily estimates of ground receiver positions, most notably in the east component by approximately 30% with respect to the nominal case wherein the carrier biases are estimated as real values. In this “static” test for terrestrial receiver positions, we achieved daily repeatability of 1.9, 2.1 and 6.0 mm in the east, north and vertical (ENV) components, respectively. For kinematic solutions, ENV repeatability is 7.7, 8.4, and 11.7 mm, respectively, representing improvements of 22, 8, and 14% with respect to the nominal. Results from precise orbit determination of the twin GRACE satellites demonstrated that the inter-satellite baseline accuracy improved by a factor of three, from 6 to 2 mm up to a long-term bias. Jason-2/Ocean Surface Topography Mission precise orbit determination tests results implied radial orbit accuracy significantly below the 10 mm level. Stability of time transfer, in low-Earth orbit, improved from 40 to 7 ps. We produced these results by applying this algorithm within the Jet Propulsion Laboratory’s (JPL’s) GIPSY/OASIS software package and using JPL’s orbit and clock products for the GPS constellation. These products now include a record of the wide-lane and phase bias estimates from the underlying global network of GPS stations. This implies that all GIPSY–OASIS positioning users can now benefit from this capability to perform single-receiver ambiguity resolution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号