首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Near‐infrared spectroscopy of a hydroecological indicator: new tool for determining sustainable yield for Floridan aquifer system
Authors:Sydney T Bacchus  Douglas D Archibald  George A Brook  Kerry O Britton  Bruce L Haines  Stephen L Rathbun  Marguerite Madden
Abstract:Pond‐cypress (Taxodium ascendens Brong.) is a dominant canopy species in depressional wetlands of the south‐eastern Coastal Plain. Unsustainable withdrawals from the karst Floridan aquifer system have caused premature decline and death of pond‐cypress trees, presumably owing to altered hydroperiods (which alter the flow of water and nutrients in trees). There has been no scientifically based means to determine sustainable yield from this regional aquifer system or to detect early stages of physical/ecological damage associated with groundwater mining and aquifer storage and recovery (ASR, which also can alter natural hydroperiods). In this study, the relationship between visual symptoms (indicators) of stress or premature decline, and spectral reflectance was evaluated using dried, milled branch tips collected from natural stands of mature pond‐cypress. Depressional systems evaluated represented four of the six aquifer system subregions where subsurface perturbations from groundwater mining: (i) were presumed not to be occurring (reference wetlands); (ii) may be occurring but are not documented; and (iii) have been confirmed. Sampled trees were assigned to one of three stress classes (1, no/minimal; 2, moderate; 3, severe) based on the visual indicators. Partial least squares–linear discriminant analysis of second derivative spectral transformations in the visible/shortwave near‐infrared (NIR) region (400–1100 nm) and the NIR region (1100–2500 nm) was used to evaluate the samples in assigned classes. Class 1 samples were discriminated from combined class 2 and 3 samples in the NIR region with 100% and 97% accuracy for consecutive winter sample periods (before bud‐break). The percentage of correctly classified samples in this spectral region was lower (85%) for summer samples (full leaf‐out). Second‐derivative models for the NIR region developed from the winter data sets predicted assigned classes for alternate winter's samples with an accuracy of 97% and 100%. High correlation between spectral reflectance of dried, milled branch tips collected from mature pond‐cypress in winter and visual indicators of premature decline suggests in situ pond‐cypress are hydroecological indicators of anthropogenic subsurface hydroperiod perturbations. This approach provides objective means for early detection of unsustainable aquifer yield and adverse impacts from ASR activities in the south‐eastern Coastal Plain. Used in conjunction with hydrological monitoring and modelling, the hydroecological indicators should provide the means with which sustainable yield in the south‐eastern Coastal Plain can be achieved and maintained. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:aquifer storage and recovery  depressional wetlands  groundwater mining impacts  hydroecological indicator  near‐infrared reflectance spectroscopy  premature tree decline  water resources protection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号