首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effects of in-cloud mass production on atmospheric light scatter
Authors:Brett A Yuskiewicz  F Stratmann  W Birmili  A Wiedensohler  E Swietlicki  O Berg  J Zhou
Abstract:Direct physical measurements of particle mass and number concentration indicate an increase in overall aerosol mass resulting from cloud processing, most likely through aqueous-phase chemistry (e.g., SO2 oxidation). Measurements conducted in the Pennines of Northern England reveal an average increase of 14 to 20% in dry aerosol mass (0.003<particle diameter<0.9 μm) after aerosol passage through an orographic cloud. The rate of in-cloud mass production is most sensitive to changes in upwind particle size distributions, SO2 concentration, and cloud water acidity. Newly-formed mass appears in size range between 200 and 600 nm and enhances the bimodality of the particle number distribution after cloud processing. Furthermore, the cloud-produced mass is estimated to increase total light scattering, bsp, by 18 to 24%. The scattering efficiency of the dry, cloud-generated aerosol is 5.0±0.3 m2 g−1 and increases to 7.4±0.7 m2 g−1 when adjusted to 90% relative humidity by incorporating particle hygroscopicity data.
Keywords:Light scattering  Cloud processing  Aqueous-phase oxidation  Particle growth  DMPS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号