首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Farmyard Manure Application on Dissolution of Carbonate Rocks and Its Eco-environmental Impact
Authors:Changli Liu  Yun Zhang  Chao Song  Hongbing Hou
Institution:1Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
Abstract:

A much improved understanding of how farmyard manure application may affect carbonate rock dissolution is needed in order to predict possible feedbacks between the rock carbon cycle and the global climate system. Two carbonate mineral rock tablets; dolomite and limestone were buried at six depths between 0 and 110 cm in a soil typical of the subtropical karst area in Guiyang City, Guizhou Province. The extent of tablet dissolution, soil CO2, soil pH, soil water content, soil mineral and chemical composition, and chemical composition of soil water were tested in order to assess the degree of dissolution under manure application over the course of one year. The results show that manure addition decreases the dissolution rate of carbonate rocks; limestone and dolomite by between 11.7%-116.9% and 25.0%-65.69% respectively, with the dissolution rate of limestone consistently exceeding that of dolomite under the same conditions. Our data indicates that the rate of pedogenesis of the dolomite and limestone rocks is decreased as much as 35.77% and 59.41% respectively, as a result of manure application. Moreover, the results suggest that manure application accelerated the generation of soil CO2, with soil CO2 concentration increasing on average by 93.94%, and the CO2 flux increasing by 67.64% compared with the control profile. Finally, the data also indicates that manure decreases CO2 uptake by dissolution of carbonate rocks by 25.50%-39.45% on a Guiyang city scale. The counteraction of the CO2 sink contributed by karst water due to farmyard manure utilization in general karst area (both dolomite and limestone) however was 59.41%-62.72%, indicating the application of manure successfully reduces both dissolution and CO2 release to the atmosphere.

Keywords:
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号