首页 | 本学科首页   官方微博 | 高级检索  
     

融合颜色和深度信息的运动目标提取方法
引用本文:胡涛,朱欣焰,呙维,张发明. 融合颜色和深度信息的运动目标提取方法[J]. 武汉大学学报(信息科学版), 2019, 44(2): 276-282. DOI: 10.13203/j.whugis20160535
作者姓名:胡涛  朱欣焰  呙维  张发明
作者单位:1.武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉, 430079
基金项目:国家自然科学基金41301517国家重点研发计划2016YFB0502204中央高校基金413000010测绘遥感信息工程国家重点实验室开放研究基金(16)03
摘    要:
行人检测是计算机视觉、智能交通等领域研究的热点与难点,基于深度传感器对室内复杂场景下的行人检测展开研究。目前,基于颜色与深度数据的目标检测方法主要包括基于背景学习的方法和基于特征检测算子的方法,前者依赖于视频序列头几十帧的背景知识,帧的数量决定检测质量;后者存在计算量大的问题,训练样本的不足也会影响行人检测结果。因此,深入分析了复杂场景特征,融合颜色和深度信息,提出了RGBD+ViBe(visual background extractor)背景剔除方法,实现前景运动目标的准确提取。实验结果表明,提出的RGBD+ViBe方法在前景运动目标检测准确率方面要明显高于仅考虑颜色或深度信息方法以及RGBD+MoG(model of Gaussian)方法。

关 键 词:深度传感器  RGBD  运动目标提取  行人检测  ViBe
收稿时间:2017-04-05

A Moving Object Detection Method Combining Color and Depth data
HU Tao,ZHU Xinyan,GUO Wei,ZHANG Faming. A Moving Object Detection Method Combining Color and Depth data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282. DOI: 10.13203/j.whugis20160535
Authors:HU Tao  ZHU Xinyan  GUO Wei  ZHANG Faming
Affiliation:1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China2.Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China3.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China4.School of Library and Information Science, Kent State University, Kent 44240, Ohio, USA
Abstract:
Pedestrian detection is a hot topic and difficult problem in areas like computer vision and intelligent traffic. This paper researches on pedestrian detection in complex indoor space using depth sensors. In recent years, target detection methods based on RGB-Depth(RGBD) data mainly include background learning method and feature detecting operator method. However, the former method depends on the background knowledge of first tens of frames, and the number of frames decides the final detection accuracy. The latter takes plenty of time for computing, and being lacks of training samples may influence the detection result. Thus, this paper analyzes the complex scene features and integrates the color and depth information, and proposes a RGBD+ViBe (visual background extractor) background elimination method. The experiment results indicate that the detection accuracy of the proposed method is higher than the methods which only consider color or depth information and the RGBD+MoG method in foreground extraction.
Keywords:depth sensor  RGBD  moving target extraction  people detection  ViBe
本文献已被 维普 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号