首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Progressive evolution and failure behavior of a Holocene river-damming landslide in the SE Tibetan Plateau,China
Authors:Li  Yanyan  Feng  Xuyang  Yao  Aijun  Zhang  Zhihong  Li  Kun  Wang  Qiusheng  Song  Shengyuan
Institution:1.Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, China
;;2.General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, China
;;3.College of Construction Engineering, Jilin University, Changchun, 130026, China
;
Abstract:

This paper presents a study on an ancient river-damming landslide in the SE Tibet Plateau, China, with a focus on time-dependent gravitational creep leading to slope failure associated with progressive fragmentation during motion. Field investigation shows that the landslide, with an estimated volume of 4.9?×?107 m3, is a translational toe buckling slide. Outcrops of landslide deposits, buckling, toe shear, residual landslide dam, and lacustrine sediments are distributed at the slope base. The landslide deposits formed a landslide dam over 60 m high and at one time blocked the Jinsha River. Optically stimulated luminescence dating for the lacustrine sediments indicates that the landslide occurred at least 2,600 years ago. To investigate the progressive evolution and failure behavior of the landslide, numerical simulations using the distinct element method are conducted. The results show that the evolution of the landslide could be divided into three stages: a time-dependent gravitational creep process, rapid failure, and granular flow deposition. It probably began as a long-term gravitationally induced buckling of amphibolite rock slabs along a weak interlayer composed of mica schist which was followed by progressive fragmentation during flow-like motion, evolving into a flow-like movement, which deposited sediments in the river valley. According to numerical modeling results, the rapid failure stage lasted 35 s from the onset of sudden failure to final deposition, with an estimated maximum movement rate of 26.8 m/s. The simulated topography is close to the post-landslide topography. Based on field investigation and numerical simulation, it can be found that the mica schist interlayer and bedding planes are responsible for the slope instability, while strong toe erosion caused by the Jinsha River caused the layered rock mass to buckle intensively. Rainfall or an earthquake cannot be ruled out as a potential trigger of the landslide, considering the climate condition and the seismic activity on centennial to millennial timescales in the study area.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号