首页 | 本学科首页   官方微博 | 高级检索  
     

一个ENSO动力-相似误差订正模式及其后报初检验
引用本文:孙丞虎,李维京,任宏利,张培群,王冬艳. 一个ENSO动力-相似误差订正模式及其后报初检验[J]. 大气科学, 2006, 30(5): 965-976. DOI: 10.3878/j.issn.1006-9895.2006.05.24
作者姓名:孙丞虎  李维京  任宏利  张培群  王冬艳
作者单位:中国气象科学研究院,北京,100081;南京信息工程大学大气科学系,南京,210044;中国气象局气候研究开放实验室,国家气候中心,北京,100081;中国气象局国家卫星气象中心,北京,100081
摘    要:为有效利用历史资料中的相似信息,减小模式误差对ENSO这类跨季节-年际尺度预测问题的影响提高动力模式的预测水平.作者利用一种基于统计相似的模式误差订正方法,以国家气候中心简化海气耦合模式为平台建立了相应的动力-相似误差订正(DAEC)模式,并着重探讨了系统相似程度(全相似或部分相似)、误差重估周期以及相似样本个数等因素对预报效果的影响.结果表明,利用该方法可以有效地改善原有模式的预报性能,其中 "全相似" 比 "部分相似" 更能反映海气耦合系统的相似程度,从而对模式误差做出更为准确的估计,使预报误差明显减小.海洋和大气的误差重估周期对结果也有较大影响,在不同相似程度下分别存在着某种最优配置使得预报效果达到最佳.另外,在对相似样本存在状况及影响的研究中则发现在当前资料长度内整体上只存在着有限个相似样本,在此范围内随着样本取样数目的增加DAEC模式的预报性能逐渐提高.

关 键 词:动力-统计相结合  ENSO预测  相似误差订正法
文章编号:1006-9895(2006)05-0965-12
收稿时间:2006-05-11
修稿时间:2006-05-112006-06-12

A Dynamic-Analogue Error Correction Model for ENSO Prediction and Its Initial Hindcast Verification
SUN Cheng-Hu,LI Wei-Jing,REN Hong-Li,ZHANG Pei-Qun and WANG Dong-Yan. A Dynamic-Analogue Error Correction Model for ENSO Prediction and Its Initial Hindcast Verification[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5): 965-976. DOI: 10.3878/j.issn.1006-9895.2006.05.24
Authors:SUN Cheng-Hu  LI Wei-Jing  REN Hong-Li  ZHANG Pei-Qun  WANG Dong-Yan
Affiliation:1 ChineseAcademy of Meteorological Sciences, Beijing 100081 ;2 Department of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044 ;3 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081 ;4 National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081
Abstract:To further reduce the impact of model error on the short term climate prediction,on the basis of an analogue correction method of errors,which utilizes the analog information from the historical datasets to estimate the evolution of model errors,a dynamical-analogue error correction model for ENSO prediction based on NCCo intermediate ocean-atmosphere coupled model has been developed.The difference between this model and the NCCo model is only that an error correction sub-model is added in the ocean and atmosphere part respectively.The impact of some basic model parameters as mentioned follows on prediction results are investigated to get the optimal parameters choices: firstly,the effect of analogue degree including the part analogue and comprehensive analogue is compared,the results exhibit that in a coupled system the comprehensive analogue is much better than the part analogue for the model in this paper,because the former can really depict the analogue degree between the current initial value and its historical partners,thus leading to a well estimation of model error.Secondly,the investigation on the effect of the re-estimate period of error(RPE) denotes that RPE is also a crucial parameter to this model.Usually,there is an optimal combination between the RPE of atmosphere and ocean model under different analogue degrees to make a good prediction.Furthermore,the results in this paper also display that there are finite analogue samples in the datasets that the authors hold,and the hindcasting skill has a linear response to the analogue sample sizes due mainly to the fact that more analogue samples can supply more error information to the model thus leading to better estimation of model error and more improvement of prediction skill.Based on the above parameter choices,the initial verification in this paper shows that the hindcast skill of this model is better than that of NCCo model for the SST prediction of the tropical Pacific Ocean,which may imply its potential application to real-time prediction.
Keywords:combination of statistical and dynamical method  ENSO prediction  analogue error correction method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号