首页 | 本学科首页   官方微博 | 高级检索  
     


Persistent weak thermal stratification inhibits mixing in the epilimnion of north-temperate Lake Opeongo,Canada
Authors:Patricia Pernica  Mathew G. Wells  Sally MacIntyre
Affiliation:1. Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, M1C1A4, Canada
2. Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106-9620, USA
Abstract:
Persistent weak temperature stratification characterizes the epilimnion of Lake Opeongo, Ontario, Canada, and reduces the magnitude of turbulent mixing. Throughout July and August 2009, the epilimnion was isothermal for only 34 % of the record, while for 28 % of the record there was at least a 2 °C temperature difference across the 5 m deep epilimnion. During these stratified periods, there were increases in gradient Richardson numbers (Ri g ), and decreases in rates of dissipation of turbulent kinetic energy ( $varepsilon$ ), the turbulence activity parameter (I = εN 2), an indicator of active mixing, and vertical eddy diffusivity (K z ) inferred from temperature microstructure profiles. During periods of shear induced mixing, values of ε approached 10?6 m2 s?3 and decreased during periods of increasing Ri g . For 0 < Ri g  < 1, average values of I were ~1,000 and values of K z were slightly higher than 10?4 m2 s?1. For Ri g >1, average values of I were ~300 and K z was reduced by one to three orders of magnitude. Mixing during cold fronts occurred over time scales of minutes to hours, which worked to erode diurnal thermoclines. However, during periods of persistent secondary thermoclines, mixing was suppressed throughout the epilimnion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号