Abstract: | In a changing climate, the common assumption of stationarity of climate extremes has been increasingly challenged, raising the need to incorporate non-stationarity in extreme value modeling. In this study, quantile regression is used to identify the trends of annual temperature extremes and their correlations with two large climate patterns, the western Pacific subtropical high (WPSH) and the Arctic Oscillation (AO) at 357 stations in China. Statistical significant positive trends and correlations between warm (or cold) temperature extremes and WPSH (or AO) have been detected at most stations. The influence of WPSH on warm extremes is significant in southern China, while the AO mainly affects the cold extremes in northern and eastern China. Then, annual temperature extremes are fitted to generalized extreme value (GEV) distributions with time-varying parameters. The summer (or winter) mean daily maximum (or minimum) temperatures and two climate indices, the WPSH index and the AO index, are chosen as covariates. In total, 16 candidate GEV distribution models are constructed, and the best fitting model with the lowest Bayesian information criterion (BIC) is selected. The 20-year return levels of annual warm (or cold) extremes in the period 1961–1980 and 1991–2010 are computed and compared. The changes of 20-year return levels of annual warm and cold extremes are jointly determined by trend and distributional changes of annual temperature extremes. Analysis of large scale atmospheric circulation changes indicate that a strengthening anticyclonic circulation and increasing geopotential height in recent decades may have contributed to the changes in temperature extremes in China. |