首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Age and origin of detrital zircons from the pre-Permian basements of the Bohemian Massif and the Alps
Authors:B Grauert  R Hänny  G Soptrajanova
Institution:1. Eidgen?ssische Technische Hochschule, Institut für Kristallographie und Petrographie, Zürich
2. Department of Terrestrial Magnetism, Carnegie Institution of Washington, 20015, Washington, D. C.
4. Eidgen?ssiche Technische Hochschule, Institut für Kristallographie und Petrographie, Zürich, Switzerland
Abstract:U-Pb isotopic analyses were made on detrital zircon populations from sandstones and quartzites of the pre-Permian basement in an attempt to shed light on the presedimentary history of the zircons and the age of their primary source rocks. Eight rock samples were collected from the Saxothuringian and Moldanubian parts of the Bohemian Massif, the western part of the Upper Austroalpine Nappes, and the Southern Alps. The heterogeneous populations were separated into fractions of different size, magnetic susceptibility, color, and shape. Because of their typically pitted surface all zircon grains from the sandstones and quartzites appear to be detrital. Only in three samples from the Alps—one from a contact metamorphic aureole—the zircons show surface recrystallization and minor new growth. With the exception of some euhedral crystals in the Saxothuringian quartzites all zircon fractions have highly discordant U-Pb ages. On a concordia diagram their data points scatter slightly around best-fit lines with upper intersections between 2000 and 2300 m.y. From this pattern the following conclusions are reached:
  1. A large proportion of the material of the metasedimentary basement rocks in the Bohemian Massif as well as in the Alps derives from one or more sources, about 2000 to 2300 m.y. old.
  2. The estimated proportion of detrital zircons with primary ages of 700 to 1500 m.y. is less than 10%.
  3. The existence of a regional high-grade metamorphism in the Bohemian Massif as well as in the Alps during 700 to 1500 m.y. can be excluded. From Rb-Sr isotopic data, a metamorphism for the time prior to 1500 m.y. is very unlikely.
The lower intersections of the best-fit lines with the concordia curve cannot be clearly correlated with an episodic disturbance of the U-Pb systems during weathering and sedimentation and/or during regional metamorphism. For the zircons of the Bohemian Massif a disturbing event, about 550 to 600 m.y. ago, is likely. Clear, euhedral, but nevertheless detrital zircons found among the zircon populations of two Saxothuringian quartzites (“Plattenquarzit” of the pre-Ordovician “Arzberger Serie” and Lower Ordovician “FrauenbachQuarzit”) crystallized most probably during the Upper Proterozoic and/or the Assyntian petrogenesis. The highly discordant age pattern of the detrital zircons from the Alps is likely to be the result of the Caledonian and/or Hercynian (=Variscan) metamorphism. Differences in concentration levels of common lead in detrital zircons and the problem of red zircons as indicators of Precambrian origin are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号