首页 | 本学科首页   官方微博 | 高级检索  
     

地地震多参数BP神经网络预测煤层厚度
引用本文:韩万林,张幼蒂,李梁. 地地震多参数BP神经网络预测煤层厚度[J]. 煤田地质与勘探, 2001, 29(4): 53-54
作者姓名:韩万林  张幼蒂  李梁
作者单位:1. 同济大学
2. 中国矿业大学能源科学与工程学院
基金项目:国家自然科学基金资助项目 (编号 :5 97740 0 5
摘    要:
依据煤层反射波运动学和动力学特征,提取出了波峰波谷振幅A1、平均频率Fa、主频带能量Qf1、低频带宽能量Qf和峰值频率Fmain等5个地地震特征参数。选取8组学习样本,利用4层BP(Back Propagation)人工神经网络模型,采用动量法和自适应调整的改进算法,训练BP网络,用训练好的BP网络预测煤层厚度。经实例验证,地震多参数BP网络预测煤层厚度精度高,是一种有效的煤厚预测方法。

关 键 词:煤层厚度 地震特征参数 BP神经网络 动量法 改进算法
文章编号:1001-1986(2001)04-0053-02
修稿时间:2000-10-26

Forecasting coal layer thickness by BP neural network from multiple seismic parameters
HAN Wan lin ,ZHANG You di ,LI Nai liang. Forecasting coal layer thickness by BP neural network from multiple seismic parameters[J]. Coal Geology & Exploration, 2001, 29(4): 53-54
Authors:HAN Wan lin   ZHANG You di   LI Nai liang
Affiliation:HAN Wan lin 1,ZHANG You di 2,LI Nai liang 2
Abstract:
Five seismic parameters such as amplitude of wave crest and hollow(A1),average frequency(Fa),energy in dominant frequency domain(Qf1),energy in low frequency domain(Qf),peak frequency(Fmain) are derived according to the seismic kinematics and dynamic characteristics of coal layer thickness.Eight groups of studying samples,made use of BP(Back Propagation)neural network of four layers improved by adopting momentum algorithm and self adaptive adjusting learning rate algorithm to train the BP neural network,and used the trained BP network to forecast coal layer thickness.It was proved that forecasting coal layer thickness by BP neural network from multiple seismic parameters had high accuracy by the practical data.and is an effective approach for forecasting coal layer thickness.
Keywords:coal layer thickness  seismic characteristics parameter  BP neural network.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号