摘 要: | 针对高分辨率遥感影像信息复杂浅层网络难以对其目标物特征信息充分学习,图像因裁剪导致边缘信息损失使得模型对图像边缘预测效果较差的问题,该文将U-Net收缩路径加深以增强网络对特征信息的学习能力,并加入随机失活函数(Dropout)层抑制过拟合现象的发生,扩张路径中加入批量归一化层以提高网络训练速度,并将忽略边缘交叉熵函数与骰子函数结合构建联合损失函数作为本文模型的损失函数以提高模型对图像边缘的预测效果。实验结果表明:该文方法对建筑物边缘能够进行有效预测;对建筑物轮廓以及较小建筑物的提取较之SVM、主干网络为VGG的U-Net提取效果有所提高;并在应用扩展研究数据集中有着较好的表现。
|