首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Nucleus of Comet 22P/Kopff and Its Inner Coma
Authors:PL LamyI Toth  L Jorda  O GroussinMF A'Hearn  HA Weaver
Institution:
  • a Laboratoire d'Astronomie Spatiale du C.N.R.S. BP 8, 13376, Marseille Cedex 12, Francef1philippe.lamy@astrsp-mrs.frf1
  • b Laboratoire d'Astronomie Spatiale du C.N.R.S. BP 8, 13376, Marseille Cedex 12, France
  • c Konkoly Observatory, P.O. Box 67, Budapest, H-1525, Hungary
  • d Max-Planck Institut für Aeronomie, Max-Planck-Strasse 2, Katlenburg-Lindau, D-37191, Germany
  • e Department of Astronomy, University of Maryland, College Park, Maryland, 20742-2421
  • f Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, 21218
  • Abstract:We report the detection of the nucleus of Comet 22P/Kopff with the Planetary Camera of the Hubble Space Telescope (HST) and with the Infrared Camera of the Infrared Space Observatory (ISOCAM). The HST observations were performed on 18 July 1996, 16 days after its perihelion passage of 2 July 1996, when it was at Rh=1.59 AU from the Sun and Δ=0.57 AU from the Earth. A sequence of images taken with four broad-band filters was repeated eight times over a 12-h time interval. The ISOCAM observations were performed on 15 October 1996, 106 days after the perihelion passage, when the comet was at Rh=1.89 AU from the Sun and Δ=1.32 AU from the Earth. Seven images were obtained with a broad-band filter centered at 11.5 μm. In both instances, the spatial resolution was appropriate to separate the signal of the nucleus from that of the coma. We determine the Johnson-Kron-Cousins BVRI magnitudes of the nucleus. The visible lightcurves constrain neither the rotation period nor the ratio of semiaxes. We favor the solution of a rather spherical nucleus, although the situation of a pole-on view of an irregular body cannot be excluded. The systematic decreasing trend of the lightcurves could suggest a period of several days. Combining the visible and infrared observations, we find that an ice-dust mixed model is ruled out, while the standard thermal model leads to a nuclear radius of Rn=1.67±0.18 km of albedo pv=0.042±0.006. The red color of the nucleus is characterized by a nearly constant gradient of S′=14±5% per kÅ from 400 to 800 nm. We estimate a fractional active area of 0.35 which places 22P/Kopff in the class of highly active short-period comets. At Rh=1.59 AU, the dust coma is characterized by a red color with a reflectivity gradient S′=17±3% per kÅ, compatible with that of the nucleus, and Afρ=545 cm, yielding a dust production rate of Qd=130 kg sec−1.
    Keywords:
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号