首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and geochronology of the mafic dikes in the Taipusi area,northern margin of North China Craton: Implications for Silurian tectonic evolution of the Central Asian Orogen
Authors:Jing-Hua Wu  Huan Li  Xiao-Shuang Xi  Hua Kong  Qian-Hong Wu  Neng-Li Peng  Xi-Ming Wu  Jing-Ya Cao  Jillian Aira S Gabo-Ratio
Institution:1.Department of Resources Science and Engineering,China University of Geosciences,Wuhan,People’s Republic of China;2.School of Geosciences and Info-Physics,Central South University,Changsha,People’s Republic of China;3.Hunan Institute of Geological Survey,Changsha,People’s Republic of China;4.Guangxi Land and Resources Planning Institute,Nanning,People’s Republic of China;5.National Institute of Geological Sciences,University of the Philippines, Diliman,Quezon City,Philippines
Abstract:The Taipusi area in the Bainaimiao Arc Belt is located in the northern margin of the North China Craton, at the southern margin of the middle Central Asian Orogenic Belt. It is characterized by large exposures of mafic dikes. In this contribution, we present first-hand whole-rock major and trace elements, zircon U–Pb geochronology and in situ trace element geochemistry data for these mafic rocks, which reveal their petrogenesis and tectonic evolution. These mafic dikes display varied compositions of \(\hbox {SiO}_{2}\) (49.42–54.29%), \(\hbox {TiO}_{2}\) (0.63–1.08%), \(\hbox {Al}_{2}\hbox {O}_{3}\) (13.94–17.60%), MgO (4.66–10.51%), \(\hbox {Fe}_{2}\hbox {O}_{3}\) (1.59–3.07%), FeO (4.60–6.90%), CaO (4.57–8.91%), \(\hbox {Na}_{2}\hbox {O}\) (1.61–4.26%), \(\hbox {K}_{2}\hbox {O}\) (0.92–2.54%) and \(\hbox {P}_{2}\hbox {O}_{5}\) (0.11–0.29%). They are mainly of high-K calc-alkaline series with indistinct Eu anomalies, enriched in large ion lithophile elements (e.g., Rb, Ba, K and Sr) but depleted in high field strength elements (e.g., Nb, P and Ti). These suggest that the crystallizing magma was derived from enriched mantle altered by metasomatic fluids in a subduction setting with imprints of active continental margin features. The high concentrations of Hf, U, Th, Pb and Y, pronounced positive Ce but slightly negative Eu anomalies in zircons indicating that the magma underwent a fractional crystallization and crustal contamination process, with medium to high \(f\hbox {O}_{2}\). Zircon LA–ICP–MS U–Pb dating yielded concordant ages of 437–442 Ma for these mafic dikes, which is consistent with the early Paleozoic volcanic arc magmatic activity in the Bainaimiao area. Hence, we conclude that the Bainaimiao Arc Belt is a continental arc formed by the southward subduction of the Paleo-Asian ocean during early Paleozoic.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号