首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of diffusional modification of garnet growth zoning on P-T path calculations
Authors:Frank P. Florence  Frank S. Spear
Affiliation:(1) Department of Geology, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA
Abstract:
The effect of intragranular diffusion on chemical zoning in garnet and on P-T paths calculated from that zoning was evaluated using a numerical model of multicomponent diffusion in combination with simulations of garnet growth. Syn-and post-growth diffusion of Mg–Fe–Mn–Ca species in garnet was calculated for a model pelitic assemblage over a range of temperatures from 485 to 635°C. Compositions from zoned garnet, as modified by diffusion, hypothetical inclusions of plagioclase within garnet and matrix phases were used to reconstruct pressure-temperature (P-T) paths from isobaric and polybaric model histories. P-T path calculations, based on numerical simulations conducted over an input isobaric heating path that reached peak temperatures between 585 and 635°C, show that relaxation of garnet compositional gradients by diffusion can induce modest to appreciable curvature in the inferred paths. Retrieved paths also indicated somewhat smaller overall temperature changes relative to the actual temperature difference of the input path. The magnitude of these distortions is shown to depend upon the heating and cooling rate and garnet crystal size as well as the actual peak temperature condition. The effect of diffusion on path trajectories in simulations with thermal histories that also included cooling were comparable to heating-only models that reached peak temperatures approximately 15–30°C higher. Compositions of garnets with radii less than 1 mm, that reached actual peak temperatures of 605°C along temperature-time histories characteristic of regional metamorphism, experienced sufficient diffusional relaxation to introduce errors of hundreds of bars to in excess of one kilobar in path trajectories. Path distortions were significant at heating/cooling rates less than 10°C/Ma, but rapidly diminished for rates faster than this. In polybaric simulations diffusion effects were least noticeable when the actual pressure-temperature conditions changed in a clockwise sense (i.e., convex to higher P and higher T), but apprecciable modification was seen in path models that underwent counterclockwise changes in P and T. Reequilibration of garnet rim compositions occurred during cooling on all paths, and temperature maxima obtained from garnet-biotite geothermometry underestimated actual peak conditions by 40 to 70°C. Calculations suggest that P-T path trajectories calculated from garnets of at least 1 mm size, and that experienced actual thermal maxima below 585°C, are not likely to be distorted by diffusional effects during regional metamorphism. However, P-T path reconstructions based on garnet zonation with smaller grains or higher temperatures may lead to misinterpretation of crystallization history. The partitioning record of peak metamorphic temperatures may be destroyed by diffusional reequilibration of garnet rim compositions during cooling, seriously complicating the task of quantitatively estimating diffusion effects on path calculations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号