首页 | 本学科首页   官方微博 | 高级检索  
     

改进的模糊聚类遥感影像分割
引用本文:高国勇. 改进的模糊聚类遥感影像分割[J]. 测绘与空间地理信息, 2015, 0(6): 98-100. DOI: 10.3969/j.issn.1672-5867.2015.06.032
作者姓名:高国勇
作者单位:辽宁省摄影测量与遥感院,辽宁沈阳,110034
摘    要:
聚类是数据挖掘的重要分支之一,引入模糊理论的模糊聚类分析为显示数据提供了模糊处理能力,在许多领域被广泛应用。本文应用考虑邻域关系的约束模糊C均值(Fuzzy C-Means with Constrains,FCM_S)算法,将邻域像素引入到目标函数中,进而有效地利用邻域像素信息,提高分割精度。本文应用FCM_S算法对模拟彩色纹理图像进行分割,计算其混淆矩阵,定性定量地与FCM算法进行对比分析,证明了该算法的鲁棒性。

关 键 词:图像分割  聚类算法  邻域约束  模糊C均值聚类算法

Improved Fuzzy Clustering Image Segmentation Algorithm for Remote Sensing Images
GAO Guo-yong. Improved Fuzzy Clustering Image Segmentation Algorithm for Remote Sensing Images[J]. Geomatics & Spatial Information Technology, 2015, 0(6): 98-100. DOI: 10.3969/j.issn.1672-5867.2015.06.032
Authors:GAO Guo-yong
Abstract:
Clustering is an important branch of data mining , fuzzy theory of fuzzy clustering analysis provides a fuzzy display data pro-cessing capability , is widely used in many fields .In the paper , considering constraints neighborhood relations Fuzzy C -means ( Fuzz-y C-means with Constrains , FCM_S) algorithm will be introduced to the neighboring pixels objective function , thus the effective use of field-pixel information to improve classification accuracy .In this paper , FCM_S algorithm to simulate color texture image classifi-cation, calculate the confusion matrix , qualitative and quantitative comparison with FCM algorithm analysis to prove the robustness of algorithm.
Keywords:image segmentation  clustering  neighborhood distance constraint  fuzzy C-means clustering algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号