首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pristinity and petrogenesis of eucrites
Authors:Jasmeet K Dhaliwal  James M D Day  Kimberly T Tait
Institution:1. Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093-0244 USA;2. Department of Natural History, Royal Ontario Museum, Toronto, M5S 2C6 Canada
Abstract:New petrography, mineral chemistry, and whole rock major, minor, and trace element abundance data are reported for 29 dominantly unbrecciated basaltic (noncumulate) eucrites and one cumulate eucrite. Among unbrecciated samples, several exhibit shock darkening and impact melt veins, with incomplete preservation of primary textures. There is extensive thermal metamorphism of some eucrites, consistent with prior work. A “pristinity filter” of textural information, siderophile element abundances, and Ni/Co ratios of bulk rocks is used to address whether eucrite samples preserve endogenous refractory geochemical signatures of their asteroid parent body (i.e., Vesta), or could have experienced exogenous impact contamination. Based on these criteria, Cumulus Hills 04049, Elephant Moraine 90020, Grosvenor Range 95533, Pecora Escarpment 91245, and possibly Queen Alexander Range 97053 and Northwest Africa 1923 are pristine eucrites. Eucrite major element compositions and refractory incompatible trace element abundances are minimally affected by metamorphism or impact contamination. Eucrite petrogenesis examined through the lens of these elements is consistent with partial melting of a silicate mantle that experienced prior metal–silicate equilibrium, rather than as melts associated with cumulate diogenites. In the absence of the requirement of a large-scale magma ocean to explain eucrite petrogenesis, the interior structure of Vesta could be more heterogeneous than for larger planetary bodies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号