奇异值分解在二维半多边形体ΔT异常最优化反演中的应用 |
| |
引用本文: | 王懋基,宋正范. 奇异值分解在二维半多边形体ΔT异常最优化反演中的应用[J]. 物探与化探, 1991, 15(1): 39-45 |
| |
作者姓名: | 王懋基 宋正范 |
| |
作者单位: | 地矿部航空物探遥感中心 |
| |
摘 要: | 本文推导出二维半多边形体的△T异常公式,详细叙述了计算磁性体模型的最优方法.由于在求解广义逆矩阵中采用了奇异值分解,解决了收敛速度和稳定性的兼顾问题,从而可以获得在最小二乘方意义上的最佳模型.文章用二个理论模型和下牛地区的实际资料说明了方法的有效性.
|
关 键 词: | 奇异值分解 位场模拟 优化反演 |
THE APPLICATION OF SVD IN THE OPTIMIZED INVERSION OF ΔT ANOMALY FROM THE 2.5D POLYGONAL BODY |
| |
Affiliation: | Aerogeophysical and Remote Sensing Center, Ministry of Geology and Mineral Resources |
| |
Abstract: | The formula of △T anomaly from the 2.5 D polygonal body has been deduced and an optimum procedure that computes the magnetic model is described in detail. As a result of the application of SVD to the solution of Generalized Matrix Inversion, the problem related to the compromise between speed and stability of the convergence has been solved. In this way, the best model in the sense of the least squares can be obtained. With two theoretical models and the data obtained in Xianiu area, this paper illustrates the effecti veness of the method. |
| |
Keywords: | |
本文献已被 维普 等数据库收录! |
| 点击此处可从《物探与化探》浏览原始摘要信息 |
|
点击此处可从《物探与化探》下载全文 |
|