首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the area and mass distribution of orbital debris fragments
Authors:Gautam D Badhwar  Phillip D Anz-Meador
Institution:(1) NASA Johnson Space Center, Houston, TX, U.S.A.;(2) Lockheed-ESC, Houston, TX, U.S.A.
Abstract:An important factor in modeling the orbital debris environment is the loss rate of debris due to atmospheric drag and luni/solar perturbations. An accurate knowledge of the area-to-mass ratio of debris fragments is required for the calculation of the effect of atmospheric drag. In general, this factor is unknown and assumed values are used. However, this ratio can be calculated for fragments for which changes in the orbital elements due to atmospheric drag as a function of time are known. This is the inverse of the technique used to determine the atmospheric density from the decay of satellites with accurately known area-to-mass ratios. These kinds of propagation programs are routinely used in predicting the decay of an orbiting vehicle. In this work the area-to-mass ratio of about 2600 fragments arising from the breakup of 24 artificial satellites have been determined. An analysis of the data on about 200 objects (rocket bodies, scientific satellites, etc.) with known mass, size, and shape has also been made. The value of the radar cross-section (RCS), as measured by the Eglin radar operating at 70 cm wavelength, has been correlated to the effective area of these objects. The measurements of the area-to-mass ratio of these objects then provide a calibration of the actual to the calculated mass. It has been shown that the debris mean mass, m, is related to the mean effective area, A, by a power law relation, m = k A 1.86. However, for a given effective area the mass distribution is very broad. Moreover, the cumulative mass distribution, N(>m), can be expressed as N(>m) = D(m + b), where D, b, and c are constants. The asymptotic slope, c, of low intensity explosions is on the average lower than the slope for high intensity explosions, but there is considerable spread of this slope in each class. Part of the flattening, as indicated by the finite value of the parameter, b, can be understood as arising out of the spread in the RCS values due to the tumbling motion of the fragments and effects related to the detectability of the fragment by the Eglin radar. It has been established that the mass in a given breakup calculated using this technique is in good agreement with the expected mass value. These results can be used in modeling the breakups of other artificial earth satellites and safety analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号