首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the weather research and forecasting (WRF) model over Guyana
Authors:Y V Rama Rao  Lyndon Alves  Bhaleka Seulall  Ziona Mitchell  Kelvin Samaroo  Garvin Cummings
Institution:(1) India Meteorological Department, Lodhi Road, New Delhi, 1100 03, India;(2) Hydrometeorological Service, Ministry of Agriculture, Georgetown, Guyana, South America
Abstract:In the present study, diagnostic studies were undertaken using station-based rainfall data sets of selected stations of Guyana to understand the variability of rainfall. The multidecadal variation in rainfall of coastal station Georgetown and inland station Timehri has shown that the rainfall variability was less during the May–July (20–30%) of primary wet season compared to the December--January (60–70%) of second wet season. The rainfall analysis of Georgetown based on data series from 1916 to 2007 shows that El Niño/La Niña has direct relation with monthly mean rainfall of Guyana. The impact is more predominant during the second wet season December--January. A high-resolution Weather Research and Forecasting model was made operational to generate real-time forecasts up to 84 h based on 00 UTC global forecast system (GFS), NCEP initial condition. The model real-time rainfall forecast during July 2010 evaluation has shown a reasonable skill of the forecast model in predicting the heavy rainfall events and major circulation features for day-to-day operational forecast guidance. In addition to the operational experimental forecast, as part of model validation, a few sensitivity experiments are also conducted with the combination of two cloud cumulus (Kain--Fritsch (KF) and Betts–Miller–Janjic (BMJ)) and three microphysical schemes (Ferrier et al. WSM-3 simple ice scheme and Lin et al.) for heavy rainfall event occurred during 28–30 May 2010 over coastal Guyana and tropical Hurricane ‘EARL’ formed during 25 August–04 September 2010 over east Caribbean Sea. It was observed that there are major differences in the simulations of heavy rainfall event among the cumulus schemes, in spite of using the same initial and boundary conditions and model configuration. Overall, it was observed that the combination of BMJ and WSM-3 has shown qualitatively close to the observed heavy rainfall event even though the predicted amounts are less. In the case of tropical Hurricane ‘EARL’, the forecast track in all the six experiments based on 00 UTC of 28 August 2010 initial conditions for the forecast up to 84 h has shown that the combination of KF cumulus and Ferrier microphysics scheme has shown less track errors compared to other combinations. The overall average position errors for all the six experiments taken together work out to 103 km in 24, 199 km in 48, 197 km in 72 and 174 km in 84 h.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号