首页 | 本学科首页   官方微博 | 高级检索  
     

集成奇异谱分析和自回归滑动平均预测日本近海海平面变化
引用本文:牛余朋, 郭金运, 袁佳佳, 祝程程, 周茂盛, 刘新, 纪兵. 2020. 集成奇异谱分析和自回归滑动平均预测日本近海海平面变化. 地球物理学报, 63(9): 3263-3274, doi: 10.6038/cjg2020N0203
作者姓名:牛余朋  郭金运  袁佳佳  祝程程  周茂盛  刘新  纪兵
作者单位:1. 山东科技大学测绘科学与工程学院, 青岛 266590; 2. 海军工程大学导航工程系, 武汉 430033
基金项目:国家自然科学基金(41774001,41704015,41774021,41874091),山东科技大学科研创新团队支持计划(2014TDJH101),山东科技大学研究生科技创新基金项目(SDKDYC190208)资助
摘    要:

本文从日本沿岸选取了28个验潮站及联测的GPS站,利用奇异谱分析(Singular Spectrum Analysis,SSA)和SSA+自回归滑动平均(Auto Regression Moving Average,ARMA)方法预测了2014—2018年的近海海平面变化和地壳垂直变化.并用同时段的验潮及GPS的实际测量值进行验证,结果显示,SSA+ARMA预测的相对海平面精度为0.0357~0.0607 m,地壳垂直运动的精度为0.0049~0.0077 m,绝对海平面的精度为0.0433~0.0683 m,且三者SSA+ARMA的预测结果均优于只用SSA预测的结果.在此基础上本文利用SSA+ARMA预测了日本沿岸2019—2023年的近海绝对海平面变化,结果显示,2019—2023年的平均海面高较往年(2014—2018)升高0.0353 m,2003—2023年绝对海平面的变化率为0.0039 m·a-1,预测结果较为理想.



关 键 词:验潮站   全球导航卫星系统   日本近海   海平面变化   奇异谱分析   自回归滑动平均   预测
收稿时间:2019-05-21
修稿时间:2019-11-01

Prediction of sea level change in Japanese coast using singular spectrum analysis and auto regression moving average
NIU YuPeng, GUO JinYun, YUAN JiaJia, ZHU ChengCheng, ZHOU MaoSheng, LIU Xin, JI Bing. 2020. Prediction of sea level change in Japanese coast using singular spectrum analysis and auto regression moving average. Chinese Journal of Geophysics (in Chinese), 63(9): 3263-3274, doi: 10.6038/cjg2020N0203
Authors:NIU YuPeng  GUO JinYun  YUAN JiaJia  ZHU ChengCheng  ZHOU MaoSheng  LIU Xin  JI Bing
Affiliation:1. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China; 2. Department of Navigation, Naval University of Engineering, Wuhan 430033, China
Abstract:
The change of sea level, especially in offshore areas, is a highly concerned topic that attracts global attention. The prediction of sea level changes in offshore areas is particularly important. In this paper, 28 tide gauge stations and collocated GPS stations were selected along the coast of Japan. The sea level changes and vertical crustal deformation from 2014 to 2018 were predicted by Singular Spectrum Analysis (SSA) and SSA+Auto Regression Moving Average (ARMA), respectively. The prediction results are validated by the actual measurements of tide gauge and GPS at the same time period. The results indicate that accuracies of relative sea level, vertical crustal motion and absolute sea level predicted by SSA+ARMA are 0.0357~0.0607 m, 0.0049~0.0077 m and 0.0433~0.0683 m, respectively, which are better than those predicted by SSA only. Then we applied the SSA+ARMA to predict the absolute sea level change in the coast of Japan from 2019 to 2023. The average sea level height in 2019—2023 is 0.0353 m which is higher than that in previous years (2014—2018), and the rate of the absolute sea level change from 2003 to 2023 is 0.0039 m·a-1, indicating that the prediction result is reliable.
Keywords:Tide gauge station  Global navigation satellite system  Japanese offshore  Sea level change  Singular spectrum analysis  Auto regression moving average  Prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号