首页 | 本学科首页   官方微博 | 高级检索  
     

面向地震巨灾保险的建筑特性快速提取方法
引用本文:郑经纬, 周越, 高爽, 戴志军, 陈苏, 熊政辉. 面向地震巨灾保险的建筑特性快速提取方法[J]. 震灾防御技术, 2020, 15(4): 739-748. doi: 10.11899/zzfy20200408
作者姓名:郑经纬  周越  高爽  戴志军  陈苏  熊政辉
作者单位:1.中国能源建设股份有限公司, 北京 100022;;2.中国地震局地球物理研究所, 北京 100081;;3.中国再保险集团股份有限公司博士后工作站, 北京 100033;;4.中国地震风险与保险实验室, 北京 100081
基金项目:中央级公益性科研院所基本科研业务费专项(DQJB17C03、DQJB17T01)
摘    要:
房屋建筑分类是抗震设计和地震风险分析的基础,是巨灾保险的纽带环节,也是结构易损性准确、完备分析的前驱保障,快速获取建筑特性参数非常关键。基于影像数据获取结构特性相比传统手段具有显著优势,然而其准确性具有一定挑战性,从影像数据得到实时的、较准确的结构特性成为地震保险数据获取技术的关注焦点。本文采用深度学习方法开展从影像数据中提取面向地震保险需求的建筑特性数据,构建基于深度学习方法的建筑高度识别模型和基于机器视觉的建筑高度识别方法,运用基于Xception神经网络深度学习和机器视觉的模型,对北京地区的建筑高度进行模型测试,该方法可为地震保险分析提供重要的基础数据支持。

关 键 词:地震   巨灾保险   建筑特性   信息提取
收稿时间:2020-06-04

Fast Extraction Method of Building Characteristics for Earthquake Catastrophe Insurance
Zheng Jingwei, Zhou Yue, Gao Shuang, Dai Zhijun, Chen Su, Xiong Zhenghui. Fast Extraction Method of Building Characteristics for Earthquake Catastrophe Insurance[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 739-748. doi: 10.11899/zzfy20200408
Authors:Zheng Jingwei  Zhou Yue  Gao Shuang  Dai Zhijun  Chen Su  Xiong Zhenghui
Affiliation:1. China Energy Engineering Group Co., Ltd., Beijing 100124, China;;2. Institute of Geophysics, China earthquake administration, Beijing 100081, China;;3. Postdoctoral workstation of China Reinsurance (Group) Corporation, Beijing 100033, China;;4. China Earthquake Risk and Insurance Laboratory, Beijing 100081, China
Abstract:
Building classification is the basis of seismic design and earthquake risk analysis, and is also the link of catastrophe insurance. It is also the precursor to the accurate and complete analysis of structural vulnerability, and it is critical to quickly obtain building characteristic parameters. Obtaining structural characteristics based on image data has significant advantages over traditional methods. However, the accuracy of its related methods is a very challenging problem. Obtaining more accurate structural characteristics from image data in real time has become the focus of seismic insurance data acquisition technology. In this paper, deep learning method is used to extract building characteristic data oriented to earthquake insurance from image data. Building height recognition model based on deep learning methods were performed and applied in Beijing. The method can provide important basic data support for earthquake insurance analysis.
Keywords:Earthquake  Catastrophe insurance  Building characteristics  Information extraction
点击此处可从《震灾防御技术》浏览原始摘要信息
点击此处可从《震灾防御技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号