首页 | 本学科首页   官方微博 | 高级检索  
     


Observations of the structure and evolution of solar flares with a soft X-ray telescope
Authors:J. A. Vorpahl  E. G. Gibson  P. B. Landecker  D. L. McKenzie  J. H. Underwood
Affiliation:1. Space Physics Laboratory, The Aerospace Corporation, 90245, El Segundo, Calif., USA
Abstract:132 soft X-ray flare events have been observed with The Aerospace Corporation/Marshall Space Flight Center S-056 X-ray telescope that was part of the ATM complement of instruments aboard Skylab. Analyses of these data are reported in this paper. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-rays emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. Loop structures are found to constitute a fundamental characteristic of flare cores and arcades of loops are found to play a more important role in the flare phenomena than previously thought. Size distributions of these core features are presented and a classification scheme describing the brightest flare X-ray features is proposed. The data show no correlations between the size of core features and: (1) the peak X-ray intensity, as indicated by detectors on the SOLRAD satellite; (2) the rise time of the X-ray flare event, or (3) the presence of a nonthermal X-ray component. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be the result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or re-orientation of these features. Brief comparisons with several theories are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号