首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure
Authors:J Haines  J M Léger  C Chateau  A S Pereira
Institution:Laboratoire de physico-chimie des matériaux, CNRS, 1, Place Aristide Briand 92190 Meudon, France e-mail: Haines@cnrs-bellevue.fr Tel.: +33-1-45075511 Fax: +33-1-45075910, FR
Abstract: Germanium dioxide was found to undergo a transition from the tetragonal rutile-type to the orthorhombic CaCl2-type phase above 25 GPa. The detailed structural evolution of both phases at high pressure in a diamond anvil cell has been investigated by Rietveld refinement using angle-dispersive, X-ray powder-diffraction data. The square of the spontaneous strain (ab)/(a+b) in the orthorhombic phase was found to be a linear function of pressure and no discontinuities in the cell constants and volume were observed, indicating that the transition is second-order and proper ferroelastic. Compression of the GeO6 octahedra was found to be anisotropic, with the apical Ge-O distances decreasing to a greater extent than the equatorial distances and becoming shorter than the latter above 7 GPa. Above this pressure, the GeO6 octahedron exhibits the common type of tetragonal distortion predicted by a simple ionic model and observed for most rutile-type structures such as those of the heavier group-14 dioxides and the metal difluorides. Above the phase transition, the columns of edge-sharing octahedra tilt about their two fold axes parallel to c and the rotation angle reaches 10.2(5)° by 36(1) GPa so as to yield a hexagonal close-packed oxygen sublattice. The compressibility increases at the phase change as is expected for a second-order transition at which an additional compression mechanism becomes available.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号