首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reflection and transmission responses of layered transversely isotropic viscoelastic media
Authors:Alexey Stovas  Bjorn Ursin
Institution:Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, S.P. Andersenvei 15A, 7491 Trondheim, Norway
Abstract:We consider a layered heterogeneous viscoelastic transversely isotropic medium with a vertical symmetry axis (a viscoelastic TIV medium) and parameters that depend on depth only. This takes into account intrinsic attenuation, anisotropy and thin layering. The seismic wavefield is decomposed into up- and downgoing waves scaled by the vertical energy flux. This scaling gives important symmetry relationships for both reflection and transmission (R/T) responses. For a stack of homogeneous layers, the exact reflection response can be computed in a numerically stable way by a simple layer-recursive algorithm. We derive exact plane-wave R/T coefficients and several linear and quadratic approximations between two viscoelastic TIV media, as functions of the real-valued horizontal slowness. The approximations are valid for pre- and post-critical values of horizontal slowness provided that the proper complex square roots are used when computing the vertical slowness. Numerical examples demonstrate that the quadratic approximations can be used for large differences in medium parameters, while the linear approximations can be used for small differences. For weak anisotropy it is sufficient to use an isotropic background medium, while for strong anisotropy it is necessary to use a weak TIV or TIV background medium. We also extend the O'Doherty–Anstey formula to the P- and SV-wave transmission responses of a stack of viscoelastic TIV layers, taking into account intrinsic attenuation, anisotropy and thin layering.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号