首页 | 本学科首页   官方微博 | 高级检索  
     

磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用
引用本文:洪双,左仁广,胡浩,熊义辉,王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. DOI: 10.13745/j.esf.sf.2021.1.10
作者姓名:洪双  左仁广  胡浩  熊义辉  王子烨
作者单位:中国地质大学(武汉)地质过程与矿产资源国家重点实验室,湖北武汉430074
基金项目:国家优秀青年科学基金项目(41522206)
摘    要:
磁铁矿广泛分布在岩浆、热液及沉积等各类矿床中,其地球化学元素组成往往受温度、氧逸度等物理化学条件的影响,能反映矿床形成环境并指示矿床成因类型,是一种重要的勘查指示矿物.自20世纪60年代以来,磁铁矿的主微量元素数据被用来构建不同的判别图,试图来区分矿床的成因类型.然而,由于矿床成因类型的多样性以及同一类型矿床的磁铁矿的...

关 键 词:磁铁矿  元素地球化学数据  随机森林  矿床成因类型
收稿时间:2021-01-11

Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits
HONG Shuang,ZUO Renguang,HU Hao,XIONG Yihui,WANG Ziye. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits[J]. Earth Science Frontiers, 2021, 28(3): 87-96. DOI: 10.13745/j.esf.sf.2021.1.10
Authors:HONG Shuang  ZUO Renguang  HU Hao  XIONG Yihui  WANG Ziye
Affiliation:State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
Abstract:
Magnetite is an oxide mineral commonly found in magmatic, hydrothermal and sedimentary deposits. Its geochemical elemental composition is largely dependent on temperature, oxygen fugacity and other physicochemical conditions, and can reveal the ore-forming environment and indicate the genetic type of ore deposits. The major and trace elements in magnetite have been used for genetic classification of ore deposits since the 1960s. However, due to genetic diversity of ore deposits and complexity of geochemical composition of magnetite from the same type of ore deposits, the applicability of magnetite discrimination diagrams is often limited based on limited magnetite geochemical data. In this study, we collected from various publications a large amount of magnetite geochemical data (n=7388) determined by electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to construct, preliminarily, two magnetite geochemical big data sets, and subsequently established a new genetic classification model based on random forest algorithm, and explored the importance of trace elements in the genetic classification of ore deposits. The results show that magnetite big data mining based on a machine learning algorithm can effectively distinguish the main types of ore deposit, with an overall classification accuracy up to 95%. Because the LA-ICP-MS magnetite data set contains high quality data on many trace elements, the classification accuracy is higher based on LA-ICP-MS data than on EPMA data, indicating the classification accuracy of ore deposit is affected by the number of trace elements in magnetite and by the accuracy of data analysis. At the same time, we found element V plays an important role in the classification of ore deposits. In addition, analyzing new magnetite data using the new discrimination model can yield the probability of each ore type and effectively distinguish the genetic type of ore deposit.
Keywords:magnetite  geochemical big data  random forest  genetic type of ore deposit  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地学前缘》浏览原始摘要信息
点击此处可从《地学前缘》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号