首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Some remarks on high-temperature—low-pressure metamorphism in convergent orogens
Authors:M SANDIFORD  R POWELL
Institution:Department of Geology and Geophysics, University of Adelaide, GPO Box 498, Adelaide, SA 5001, Australia;Department of Geology, University of Melbourne, Parkville, Victoria 3502, Australia
Abstract:Many high-temperature–low-pressure (high- T –low- P ) metamorphic terranes show evidence for peak mineral growth during crustal thickening strain increments at pressures near the maximum attained during the heating–cooling cycle. Such terranes are not readily explained as the conductive response to crustal thickening since the resulting Moho temperatures would greatly exceed the crustal liquidus and because heating due to conductive equilibration on length scales appropriate to lithospheric-scale strains must greatly outlast the deformation. Consequently, high- T –low- P metamorphism may be generated during crustal thickening only when significant heat is advected within the crust, as for example may occur during the segregation of granitic melts. We show that without the addition of asthenospheric melts and at strain rates appropriate to continental deformation the conditions required for significant lower crustal melting during deformation are only likely to be attained if heat flow into the lower crust during crustal thickening is increased substantially, for example, by removing the mantle part of the lithosphere. A simple parameterization of lithospheric deformation involving the vertical strain on the scale of the crust, c, and the lithosphere, 1 respectively, allows the potential energy of the evolving orogen to be readily evaluated. Using this parameterization we show that an important isostatic consequence of the deformation geometries capable of generating such high- T –low- P metamorphism during crustal thickening (with c1) is an imposed upper limit to crustal thicknesses which is much lower than for homogeneous deformations (fc= f1) for the same initial lithospheric configuration.
Keywords:isostasy  metamorphism  orogen  strain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号