首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Suppressive effects of benzo[a]pyrene upon fish immune function: evolutionarily conserved cellular mechanisms of immunotoxicity
Authors:Carlson E A  Li Y  Zelikoff J T
Institution:Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
Abstract:Knowledge gained through the use of alternative animal models has significantly enhanced our understanding of life at all levels of biological organization. The discipline of toxicology is under considerable pressure to develop such models due to increasing public concern regarding the experimental use of mammals. Studies in this laboratory have focused on the utility of a small laboratory fish model, the Japanese medaka (Oryzias latipes), to investigate immunotoxicological effects of benzoa]pyrene (BaP). BaP is a ubiquitous environmental contaminant and known mammalian immunotoxicant. This laboratory has demonstrated that in vivo exposure of medaka to BaP (2-200 microg/g BW) significantly depresses both innate and humoral immunity. Further studies have indicated that BaP activates its own biotransformation pathway within medaka immune cells following both in vivo and in vitro exposure. In addition, reduction of BaP metabolism with alpha-naphthoflavone results in the reversal of BaP-induced suppression of antibody production in vitro. Inhibition of CYPlA-mediated metabolism within medaka immune cells also alleviates the immunotoxicity induced by benzoa]pyrene-7,8-dihydrodiol, but not benzoa]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). This suggests that BPDE may be an ultimate immunotoxicant. Results from this study in medaka are in agreement with previously conducted rodent studies that indicated a role for immunotoxic BaP metabolites in BaP-induced suppression of humoral immunity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号