首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解的分数维地震随机噪声衰减方法
引用本文:颜中辉, 栾锡武, 王赟, 潘军, 方刚, 施剑. 2017. 基于经验模态分解的分数维地震随机噪声衰减方法. 地球物理学报, 60(7): 2845-2857, doi: 10.6038/cjg20170729
作者姓名:颜中辉  栾锡武  王赟  潘军  方刚  施剑
作者单位:1. 国土资源部油气资源和环境地质重点实验室, 中国地质调查局青岛海洋地质研究所, 山东青岛 266071; 2. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 山东青岛 266071; 3. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083
基金项目:山东省自然科学基金培养基金项目(ZR2015PD006),国土资源部公益性行业科研专项(201511037)资助.
摘    要:

经验模态分解算法(EMD)是一种基于有效波和噪声尺度差异进行波场分离的随机噪声压制方法,但由于实际地震数据波场复杂,导致模态混叠较严重,仅凭该方法进行去噪很难达到理想效果.本文基于EMD算法对信号多尺度的分解特性,结合Hausdorff维数约束条件,提出一种用于地震随机噪声衰减的新方法.首先对地震数据进行EMD自适应分解,得到一系列具有不同尺度的、分形自相似性的固有模态分量(IMF);在此基础上,基于有效信号和随机噪声的Hausdorff维数差异,识别混有随机噪声的IMF分量,对该分量进行相关的阈值滤波处理,从而实现有效信号和随机噪声的有效分离.文中从仿真信号试验出发,到模型地震数据和实际地震数据的测试处理,同时与传统的EMD处理结果相对比.结果表明,本文方法对地震随机噪声的衰减有更佳的压制效果.



关 键 词:EMD   Hausdorff维数   随机噪声   自适应分解   IMF分量
收稿时间:2016-08-11
修稿时间:2017-04-25

Seismic random noise attenuation based on empirical mode decomposition of fractal dimension
YAN Zhong-Hui, LUAN Xi-Wu, WANG Yun, PAN Jun, FANG Gang, SHI Jian. 2017. Seismic random noise attenuation based on empirical mode decomposition of fractal dimension. Chinese Journal of Geophysics (in Chinese), 60(7): 2845-2857, doi: 10.6038/cjg20170729
Authors:YAN Zhong-Hui  LUAN Xi-Wu  WANG Yun  PAN Jun  FANG Gang  SHI Jian
Affiliation:1. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao Institute of Marine Geology, China Geological Survey, Shandong Qingdao 266071, China; 2. Function Laboratory of Marine Geo-Resource Evaluation and Exploration Technology, Qingdao National Laboratory for Marine Science and Technology, Shandong Qingdao 266071, China; 3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
Abstract:Empirical mode decomposition (EMD) is a noise suppression algorithm by using wave field separation,which is based on the scale differences between effective signal and noise. However, because the complexity of the real seismic wave field can result in serious aliasing modes, it is not ideal and effective to denoise using this method alone. Based on the multi-scale decomposition characteristics of the EMD algorithm for signal, combining with Hausdorff dimension constraints, we propose a new method for seismic random noise attenuation. Firstly,we apply EMD algorithm adaptive decomposition of seismic data to obtain a series of IMF components with different scales. On this basis, based on the difference of Hausdorff dimension between effective signals and random noise, we identify IMF component mixed with random noise. Then we use the threshold correlation filtering process to separate the valid signal and random noise effectively. This method includes three steps, i.e. simulation signal experiment, the seismic model data processing and real seismic data processing. Compared with traditional EMD method, this new method of seismic random noise attenuation has a better suppression effect.
Keywords:EMD  Hausdorff dimension  Random noise  Adaptive decomposition  IMF component
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号