首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strength,stiffness and cyclic deformation capacity of RC frames converted into walls by infilling with RC
Authors:Dionysis Biskinis  Michael N Fardis  Apostolos Psaros-Andriopoulos
Institution:1.University of Patras,Patras,Greece
Abstract:In seismic retrofitting of concrete buildings, frame bays are converted into reinforced concrete (RC) walls by infilling the space between the frame members with RC of a thickness of not more than their width. The cyclic behavior of the resulting wall depends on the connection between the RC infill and the surrounding RC members. The paper uses the results from 56 cyclic tests on such composite walls to express their properties in terms of the geometry, the reinforcement and the connection. Properties addressed are: (a) the yield moment at the story base; (b) the secant-to-yield-point stiffness over the shear span of the wall in a story; (c) the deflection at flexural failure in cyclic loading; (d) the cyclic shear resistance, including a sliding shear failure mode. Separate models are given for squat walls failing in shear and for those where the top of the column shears-off. The proposals are modifications of models developed in the past for monolithic RC walls from several hundred cyclic tests; blind application of these latter models as though the walls were monolithic gives, in general, unsafe predictions. By contrast, the diagonal compression strut approach in ASCE41-06 is safe-sided, but gives unacceptably large prediction scatter.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号