首页 | 本学科首页   官方微博 | 高级检索  
     


A review on missing hydrological data processing
Authors:Yongbo Gao  Christoph Merz  Gunnar Lischeid  Michael Schneider
Affiliation:1.Leibniz Centre for Agricultural Landscape Research (ZALF),Müncheberg,Germany;2.Institute of Geological Sciences, Workgroup Hydrogeology,Freie Universit?t Berlin,Berlin,Germany;3.Department of Earth and Environmental Science,University of Potsdam,Potsdam-Golm,Germany
Abstract:Like almost all fields of science, hydrology has benefited to a large extent from the tremendous improvements in scientific instruments that are able to collect long-time data series and an increase in available computational power and storage capabilities over the last decades. Many model applications and statistical analyses (e.g., extreme value analysis) are based on these time series. Consequently, the quality and the completeness of these time series are essential. Preprocessing of raw data sets by filling data gaps is thus a necessary procedure. Several interpolation techniques with different complexity are available ranging from rather simple to extremely challenging approaches. In this paper, various imputation methods available to the hydrological researchers are reviewed with regard to their suitability for filling gaps in the context of solving hydrological questions. The methodological approaches include arithmetic mean imputation, principal component analysis, regression-based methods and multiple imputation methods. In particular, autoregressive conditional heteroscedasticity (ARCH) models which originate from finance and econometrics will be discussed regarding their applicability to data series characterized by non-constant volatility and heteroscedasticity in hydrological contexts. The review shows that methodological advances driven by other fields of research bear relevance for a more intensive use of these methods in hydrology. Up to now, the hydrological community has paid little attention to the imputation ability of time series models in general and ARCH models in particular.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号