首页 | 本学科首页   官方微博 | 高级检索  
     


The vertical structure of the atmospheric boundary layer over the central Arctic Ocean
Authors:BIAN Lingen  MA Yongfeng  LU Changgui  LIN Xiang
Affiliation:Chinese Academy of Meteorological Sciences, Beijing 100081, China
Abstract:
The tropopause height and the atmospheric boundary layer(PBL)height as well as the variation of inversion layer above the floating ice surface are presented using GPS(global position system)radiosonde sounding data and relevant data obtained by China's fourth arctic scientific expedition team over the central Arctic Ocean(86°-88°N,144°-170°W)during the summer of 2010.The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1℃ in the central Arctic Ocean.Two zones of maximum wind(over 12 m/s)are found in the wind profile,namely,low-and upper-level jets,located in the middle troposphere and the tropopause,respectively.The wind direction has a marked variation point in the two jets from the southeast to the southwest.The average PBL height determined by two methods is 341 and 453 m respectively.These two methods can both be used when the inversion layer is very low,but the results vary significantly when the inversion layer is very high.A significant logarithmic relationship exists between the PBL height and the inversion intensity,with a correlation coefficient of 0.66,indicating that the more intense the temperature inversion is,the lower the boundary layer will be.The observation results obviously differ from those of the third arctic expedition zone(80°-85°N).The PBL height and the inversion layer thickness are much lower than those at 87°-88°N,but the inversion temperature is more intense,meaning a strong iceatmosphere interaction in the sea near the North Pole.The PBL structure is related to the weather system and the sea ice concentration,which affects the observation station.
Keywords:central Arctic Ocean  radiosonde sounding  PBL height  inversion layer
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号