首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Quaternary paleoclimate change on the permeability of the loess–paleosol sequence in the Loess Plateau,northern China
Authors:Kai Hou  Hui Qian  Qiying Zhang  Tao Lin  Yao Chen  Yuting Zhang  Wengang Qu
Institution:1. School of Environmental Science and Engineering, Chang'an University, Xi'an, Shaanxi, China;2. School of Environmental Science and Engineering, Chang'an University, Xi'an, Shaanxi, China

Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, Shaanxi, China

Abstract:Permeability differences in multi-cycle loess–paleosol aeolian sediments, which are still poorly understood, have the potential to significantly improve our understanding of climatic change during the glacial–interglacial periods of the Quaternary. In this study, the permeability of a well-preserved and continuous loess–paleosol sequence in the South Jingyang Plateau was investigated. Weathering intensity was inferred using a series of climate proxies including grain-size distribution, magnetic susceptibility and mineralogy. The results of laboratory tests showed that the average saturated hydraulic conductivity of loess layers is higher than that of paleosol layers. Also, clear differences between loess and paleosol were found in terms of depth variations of the vertical and horizontal saturated hydraulic conductivities. Differences in loess–paleosol were also found for other proxies for pedogenic weathering i.e. clay content, sand content, Kd value (ratio of coarse silt to clay), magnetic susceptibility, dolomite content and the ratios of hornblende/illite and hornblende/chlorite]. Our results showed a high permeability of loess layers associated with weak pedogenic weathering during cold/dry paleoclimatic conditions in glacial stages. On the contrary, paleosol layers developed in a warm/humid climate during the interglacial stages experienced strong pedogenic weathering that resulted in lower permeability. Based on these results, we construct a connection between Quaternary climate change theory and the modern hydrological system. This provides a scientific basis for investigating the distribution and pollution of groundwater resources in the local region. © 2020 John Wiley & Sons, Ltd.
Keywords:loess  paleosol sequences  hydraulic conductivity  paleoclimatology  pedogenic weathering  Chinese Loess Plateau
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号