首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of different rainfall products on landscape modelling simulations
Authors:Christopher J Skinner  Nadav Peleg  Niall Quinn  Tom J Coulthard  Peter Molnar  Jim Freer
Institution:1. Energy and Environment Institute, University of Hull, Hull, UK;2. ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland;3. School of Geographical Sciences, University of Bristol, Bristol, UK;4. School of Geographical Sciences, University of Bristol, Bristol, UK

Cabot Institute, University of Bristol, Bristol, UK

Abstract:Rainfall products can contain significantly different spatiotemporal estimates, depending on their underlying data and final constructed resolution. Commonly used products, such as rain gauges, rain gauge networks, and weather radar, differ in their information content regarding intensities, spatial variability, and natural climatic variability, therefore producing different estimates. Landscape evolution models (LEMs) simulate the geomorphic changes in landscapes, and current models can simulate timeframes from event level to millions of years and some use rainfall inputs to drive them. However, the impact of different rainfall products on LEM outputs has never been considered. This study uses the STREAP rainfall generator, calibrated using commonly used rainfall observation products, to produce longer rainfall records than the observations to drive the CAESAR-Lisflood LEM to examine how differences in rainfall products affect simulated landscapes. The results show that the simulation of changes to basin geomorphology is sensitive to the differences between rainfall products, with these differences expressed linearly in discharges but non-linearly in sediment yields. Furthermore, when applied over a 1500-year period, large differences in the simulated long profiles were observed, with the simulations producing greater sediment yields showing erosion extending further downstream. This suggests that the choice of rainfall product to drive LEMs has a large impact on the final simulated landscapes. The combination of rainfall generator model and LEMs represents a potentially powerful method for assessing the impacts of rainfall product differences on landscapes and their short- and long-term evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Keywords:landscape evolution  weather generator  numerical modelling  rainfall  uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号