LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy |
| |
Authors: | Marco Baldo Claudio Bicocchi Ugo Chiocchini Daniele Giordan Giorgio Lollino |
| |
Affiliation: | aFacoltà di Agraria, Università della Tuscia, Viterbo, Italy;bNational Research Council, Istituto di Ricerca per la Protezione Idrogeologica Torino, Italy;cRegione Lazio, Area difesa del suolo, Roma, Italy |
| |
Abstract: | The Radicofani Basin, stretching about 30 km NW–SE, is an intra-Central Apennine basin connected to Pliocene–Pleistocene extensional tectonics. It consists of an Early to Middle Pliocene succession including essentially shelf pelites. In the Radicofani area, province of Siena (Tuscany region), morphodynamic processes are very frequent with widespread badlands and rapidly evolving mudflows. In order to evaluate the general instability of the Radicofani area, geological and geomorphological surveys were carried out. The 1954, 1990 and 2003 aerial surveys allowed a comparison of the changes in the various morphological aspects of the study area, which suggested an increase in slope instability with time. A new complex translational landslide evolving into mudflows, activated during the winter of 2003, was monitored using an experimental system based on terrestrial LIDAR (Light Detection and Ranging) and GPS (Global Positioning System) technologies. This system allowed the monitoring of the morphologic and volumetric evolution of the landslide. A comparison of the monitoring data of October 2004, June 2005, May 2006 and May 2007 points out that the evolution is characterised by the sliding of displaced materials. A volume of about 1300 m3 of materials was removed during the period 2004–2005, 300 m3 for 2005–2006, and 400 m3 for 2006–2007. The greater initial mass movement probably reflects a greater static imbalance during the early period of landslide movement and increased rainfall. Therefore, the proposed monitoring system methodology allows the numerical evaluation of the landslide morphological evolution and to validate the landslide evolution model based on geological and geomorphological field surveys. |
| |
Keywords: | Mass wasting Pelites GPS LIDAR DTM Central Italy |
本文献已被 ScienceDirect 等数据库收录! |
|