结合空间—光谱信息的快速自训练高光谱遥感影像分类 |
| |
引用本文: | 金垚,董燕妮,杜博.2024.结合空间—光谱信息的快速自训练高光谱遥感影像分类.遥感学报,28(1): 219-230DOI:10.11834/jrs.20232286 |
| |
作者姓名: | 金垚 董燕妮 杜博 |
| |
作者单位: | 1.中国地质大学(武汉) 地球物理与空间信息学院, 武汉 430074;2.湖北珞珈实验室, 武汉 430079;3.武汉大学 测绘遥感信息工程国家重点实验室, 武汉 430079;4.武汉大学 资源与环境科学学院, 武汉 430079;5.武汉大学 计算机学院, 武汉 430072 |
| |
基金项目: | 国家自然科学基金(编号:62222116,62171417,41871243,62141112); |
| |
摘 要: | 自训练方法被广泛应用于高光谱影像分类任务中以解决标记样本获取困难的问题。传统的自训练方法不仅忽略了高光谱影像所能提供的空间信息,导致最终分类精度受到影响;同时在每次迭代过程中都需要完成一次对未标记数据的分类任务,导致需要大量的时间成本。因此,针对上述问题,本文提出了一种基于空间—光谱信息的快速自训练方法用于高光谱影像分类。与传统的自训练方法不同,该方法在迭代过程中使用空间—光谱信息对未标记数据进行筛选完成标记样本的扩充,而不是使用分类器对未标记样本进行分类。首先针对初始标记样本使用空间邻域块选择空间近邻点,然后使用自适应阈值对空间近邻点进行二次筛选得到空谱近邻点赋予标记,最后根据扩充后的标记样本对分类器进行训练完成分类任务。结果表明,在WashingtonDCMallSubimage高光谱数据集中每类分别选择2个和10个训练样本时,整体分类精度分别达到了93.17%和95.43%;而在IndianPines数据集中整体分类精度分别达到了59.75%和86.13%。我们提出的结合空间—光谱信息的快速自训练方法和对比方法相比,我们的方法有明显的提升。
|
关 键 词: | 高光谱遥感 半监督分类 小样本问题 空间—光谱信息 自训练方法 |
收稿时间: | 2022-06-06 |
|
| 点击此处可从《遥感学报》浏览原始摘要信息 |
|
点击此处可从《遥感学报》下载免费的PDF全文 |
|