首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield
Authors:DJ Bottomley  JD Ross  WB Clarke
Institution:1. National Hydrology Research Institute, Inland Waters Directorate, Environment Canada, 562 Booth Street, Ottawa, Ontario, K1A OE7 Canada;2. Whiteshell Nuclear Research Establishment, Atomic Energy of Canada Ltd., Pinawa, Manitoba, ROE 1LO Canada;3. Dept. of Physics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada
Abstract:Ground waters in a Precambrian granitic batholith at the Whiteshell Nuclear Research Establishment (WNRE) in Pinawa, Manitoba contain between 5 × 10?5 and 10?1 cc STP/gH2O of radiogenic helium-4 but have relatively uniform 3He/4He ratios of between 0.6 × 10?8 and 2.3 × 103. The highest helium samples also contain radiogenic 21,22Ne produced by (α,n) or (n,α) reactions with other isotopes. As much as 1.8 × 10?9ccSTP/gH2O of excess 21Ne and 3.8 × 10?9ccSTP/gH2O of excess 22Ne have been measured. Helium and 21Ne ages of these ground waters, calculated on the basis of known crustal production rates of 4He and 21Ne, are unreasonably high (up to 2 × 105 years) and incompatible with the 14C ages and other isotopic and hydrogeologic data. Uranium enrichment in the flow porosity of the granite may dominate 4He and 21,22Ne production in this granite and mask the contributions from more typical U and Th concentrations in the rock matrix.At the Chalk River Nuclear Laboratories in Ontario helium concentrations in ground waters in a Precambrian monzonitic gneiss range from 1.5 × 10?7 to 8.7 × 10?4ccSTP/gH2O with the 3He/4He ratios ranging from 2.0 × 10?3 to 1.5 × 10?7. The highest helium concentrations may be attributable to the presence of a thick uraniferous pegmatite vein and yield helium ages more than two orders of magnitude higher than the 14C ages. Application of He age dating equations to ground waters from Precambrian granitic rocks requires knowledge of the nature of uranium and thorium enrichment in the subsurface in order to select appropriate values for porosity and uranium and thorium concentration in the rock.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号