Structure and viscosity of rhyolitic composition melts |
| |
Authors: | Michael F. Hochella Gordon E. Brown |
| |
Affiliation: | Department of Geology, Stanford University, Stanford, CA 94305, U.S.A. |
| |
Abstract: | The average local structure of a rhyolitic composition glass has been determined at 25°C using X-ray radial distribution analysis (RDA) and quasi-crystalline modelling and is best described as similar to that in a stuffed framework composed principally of six-membered rings of Si and Al tetrahedra (basically a stuffed tridymite-like model). Using this model it is possible to calculate a density (2.41 g/cm3) which compares well with the measured density (2.40 g/cm3); a structural model based on four-membered rings (an albite-like model) results in a substantially higher calculated density (2.60 g/cm3). We suggest that the rhyolite glass structural model is appropriate for rhyolitic melts, based on evidence from the recent literature. New viscosity data for an anhydrous rhyolite composition measured between 1200°C and 1500°C are presented and interpreted in terms of our proposed structural model and previous melt structure models for the major normative components of rhyolite. A mechanism for diffusion and viscous flow in framework silicate melts (including rhyolite composition) is proposed on the basis of recent molecular orbital calculations and molecular dynamics simulations of silicate and fluoride melts. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|