首页 | 本学科首页   官方微博 | 高级检索  
     

离散点集(地震)空间分布多重分形计算的精度估算
引用本文:朱令人,龙海英. 离散点集(地震)空间分布多重分形计算的精度估算[J]. 地震, 2000, 20(3): 1-8
作者姓名:朱令人  龙海英
作者单位:新疆维吾尔自治区地震局,乌鲁木齐,830011;新疆维吾尔自治区地震局,乌鲁木齐,830011
基金项目:地震科学联合基金会资助项目!( 92 2 87)
摘    要:地震是一种非线性现象,因而很多人计算地震分布的分形维数,但具体各种计算方法的误差(或精度)是多少,还没有定量的估计。鉴于地震空间分布具有有限、离散、点集的特点,用双标度Contor 多分形集理论模型数值模拟来估算其精度(误差),并判定各种方法的优劣。理论模型数值模拟得出如下结论:① 随着样本容量的增大,计算精度会提高;② 固定半径法(RAD) 计算误差偏大,固定质量法(MAS)和最小生成树法(MST)较好;③ 当样本容量达到约200时,MAS法和MST 法计算误差大体可稳定在0.05的范围内。

关 键 词:多重分形  精度  理论模型  样本容量
收稿时间:1999-12-06
修稿时间:2000-01-12

Precision estimate on multi-fractal calculation of spatial distribution for earthquake dispersion and point sets
ZHU Ling-ren,LONG Hai-ying. Precision estimate on multi-fractal calculation of spatial distribution for earthquake dispersion and point sets[J]. China Earthguake Engineering Journal, 2000, 20(3): 1-8
Authors:ZHU Ling-ren  LONG Hai-ying
Affiliation:Seismological Bureau of Xinjiang Uigur Autonomous Region, Urumchi 830011, China
Abstract:Earthquake is a non-line phenomenon, so many seismologists calculate the fractal dimension of seismic distribution. However, the precision of calculation method is uncertain. Because the space-time distribution of earthquakes is characteristics of limitation, dispersion and point sets, we use the digital simulation of theory models of two-dimension double-rule Contor sets to estimate its precision (or error),and to judge some methods good or not. From the theory models simulated digitally,we obtained some results.① As the samples increasing, the precision of several methods is increasing.② The error of the fixed radius method (RAD) is too big,while ones of the fixed mass method (MAS) and the minimal spanning tree method (MST) is smaller.③ When the numbers of samples are more than 200,the calculation precision of MAS and MST is around 0.05.
Keywords:Multi fractal  Precision  Theory model  Numbers of samples  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地震》浏览原始摘要信息
点击此处可从《地震》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号