首页 | 本学科首页   官方微博 | 高级检索  
     


A parallel ensemble-based framework for reservoir history matching and uncertainty characterization
Authors:Reza Tavakoli  Gergina Pencheva  Mary F. Wheeler  Benjamin Ganis
Affiliation:1. Institute for Computational Engineering and Sciences, The University of Texas at Austin, 1 University Station, ACES, C0200, Austin, TX, 78712, USA
Abstract:We present a parallel framework for history matching and uncertainty characterization based on the Kalman filter update equation for the application of reservoir simulation. The main advantages of ensemble-based data assimilation methods are that they can handle large-scale numerical models with a high degree of nonlinearity and large amount of data, making them perfectly suited for coupling with a reservoir simulator. However, the sequential implementation is computationally expensive as the methods require relatively high number of reservoir simulation runs. Therefore, the main focus of this work is to develop a parallel data assimilation framework with minimum changes into the reservoir simulator source code. In this framework, multiple concurrent realizations are computed on several partitions of a parallel machine. These realizations are further subdivided among different processors, and communication is performed at data assimilation times. Although this parallel framework is general and can be used for different ensemble techniques, we discuss the methodology and compare results of two algorithms, the ensemble Kalman filter (EnKF) and the ensemble smoother (ES). Computational results show that the absolute runtime is greatly reduced using a parallel implementation versus a serial one. In particular, a parallel efficiency of about 35 % is obtained for the EnKF, and an efficiency of more than 50 % is obtained for the ES.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号