首页 | 本学科首页   官方微博 | 高级检索  
     

局部单应约束的高精度图像自动配准方法
引用本文:杨化超,张磊,姚国标,王永波. 局部单应约束的高精度图像自动配准方法[J]. 测绘学报, 2012, 41(3): 401-408
作者姓名:杨化超  张磊  姚国标  王永波
作者单位:1.国土环境与灾害监测国家测绘地理信息局重点实验室,江苏徐州221116/中国矿业大学环境与测绘学院,江苏徐州221116;2.中国矿业大学环境与测绘学院,江苏徐州,221116
基金项目:国家自然科学基金,中国博士后科学基金
摘    要:提出一种基于SIFT特征的抗差图像匹配算法。算法分为两个阶段:①初始匹配,综合利用SIFT特征匹配方法和基于SIFT特征尺度和方位信息的自适应归一化互相关(normalized Cross correlation,NCC)方法建立初始相关,并基于几何关系一致性检测剔除误匹配;②匹配传播,在初始相关的基础上,利用自适应NCC和局部单应约束进行匹配传播,迭代产生更多的匹配点并采用几何关系一致性检测剔除可能的误匹配。初始单应采用最小二乘匹配方法估计得到,并采用自适应NCC为其提供良好的初始值。与现有的基于SIFT特征的图像配准方法相比,算法在抗几何变形和配准精度等方面具有优越性。

关 键 词:图像配准  尺度不变特征变换  匹配传播  局部单应  最小二乘匹配

An Automated Image Registration Method with High Accuracy Based on Local Homography Constraint
YANG Huachao,ZHANG Lei,YAO Guobiao,WANG Yongbo. An Automated Image Registration Method with High Accuracy Based on Local Homography Constraint[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 401-408
Authors:YANG Huachao  ZHANG Lei  YAO Guobiao  WANG Yongbo
Affiliation:1,2 1.Key Laboratory for Land Environment & Disaster Monitoring of SBSM,Xuzhou 221116,China;2.School of Environmental & Spatial Informatics,China University of Mining & Technology,Xuzhou 221116,China
Abstract:A robust image registration algorithm is proposed,which includes the following two stages:①initial matching,SIFT matching method and the normalized cross correlation(NCC) metric modified with adaptive scale and orientation of SIFT features are proposed to find good initial matches,and the geometric consistency check is used to identify false matches;②matching propagation,a robust matching propagation using adaptive NCC and local homography constraint starts from the initial correspondences established in the first phase,and the geometrical consistency check is used simultaneously to eliminate the incorrect matches.By using matching propagation,control points used to image registration can be obtained as many as possible.Initial local homography is estimated using least squares matching algorithm and the initial values of unknown parameters needed for it is provided by adaptive NCC method.Compared to existing point-based image registration methods,the proposed algorithm has better performance in terms of registration accuracy and robustness to geometric deformations within images.
Keywords:image registration scale invariant feature transformation matching propagation local homography least squares matching
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号