首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的遥感影像厚云及云阴影去除
引用本文:梁栋,孔颉,胡根生,黄林生. 基于支持向量机的遥感影像厚云及云阴影去除[J]. 测绘学报, 2012, 41(2): 225-231,238
作者姓名:梁栋  孔颉  胡根生  黄林生
作者单位:1.安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039/安徽大学电子信息工程学院,安徽合肥230039;2.安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039/安徽大学电子信息工程学院,安徽合肥230039;3.安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039/安徽大学电子信息工程学院,安徽合肥230039;4.安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039/安徽大学电子信息工程学院,安徽合肥230039
基金项目:国家自然科学基金,安徽省教育厅重点科研计划,安徽大学211工程学术创新团队项目
摘    要:
提出一种基于支持向量机的遥感影像厚云及云阴影去除方法。首先利用支持向量机的学习性能检测影像中的云层,并利用太阳角度信息,判定云阴影区域,得到云层和云阴影的二值图。再对影像进行支持向量值轮廓波变换,利用云层和云阴影二值图生成的选择矩阵,对变换系数进行多层镶嵌,完成云层及云阴影的初去除。最后对影像镶嵌未能去除的云层及云阴影,通过统计学补偿的方法进行修复。仿真试验表明,该方法能有效恢复厚云区域的地物信息,形成的无云图像细节清晰,图像光滑。

关 键 词:遥感影像  云层去除  支持向量机  支持向量值轮廓波变换  影像镶嵌
收稿时间:2010-08-16
修稿时间:2011-02-23

The Removal of Thick Cloud and Cloud Shadow of Remote Sensing Image Based on Support Vector Machine
LIANG Dong,KONG Jie,HU Gensheng,HUANG Linsheng. The Removal of Thick Cloud and Cloud Shadow of Remote Sensing Image Based on Support Vector Machine[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 225-231,238
Authors:LIANG Dong  KONG Jie  HU Gensheng  HUANG Linsheng
Affiliation:1,2 1.Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,Anhui University,Hefei 230039,China;2.School of Electronics and Information Engineering,Anhui University,Hefei 230039,China
Abstract:
An approach of removing thick cloud and cloud shadow in remote sensing image based on support vector machine is suggested.Firstly,the learning ability of support vector machine is used to detect cloud in remote sensing image,and combining the information of solar angle,cloud shadow area is detected.So the binary images of cloud and its shadow are obtained.Secondly,the remote sensing images are transformed by support vector value contourlet transform.The transforming coefficients are mosaiced using selection matrices produced by the binary images to achieve preliminary removal of cloud and its shadow.Finally,the cloud and its shadow which can not be removed by image mosaic are repaired by using the method of statistics.Experiments show that the method can recover the ground information covered by cloud efficiently and reconstruct the cloud free image with clear details and better smoothness.
Keywords:remote sensing image  cloud removal  support vector machine  support vector value contourlet transform  image mosaic
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号